目录摘要 (I)关键词 (I)Abstract (II)Key words (II)前言 (1)1预备知识 (1)1.1相关定理 (1)2 多元函数积分中值定理的各种形式 (2)2.1 曲线积分中值定理的推广 (2)2.1.1第一型曲线积分中值定理 (2)2.1.2第二型曲线积分中值定理 (4)2.2二重积分中值定理的探究及推广 (5)2.3曲面积分中值定理的探究及推广 (7)2.3.1第一型曲面积分中值定理 (7)2.3.2第二型曲面积分中值定理 (7)结论 (9)参考文献 (10)致谢 (11)摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式.关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理Study on mean-value theorems for Riemann-Stieltjes integrals offunctions of two variablesAbstract: Mean-value theorems for integrals are one of theorems in mathematical analysis. In this paper mean-value theorem for Riemann-Stieltjes integrals of functions of two variables are discussed. We obtain all kinds of mean-value theorems for integrals which include curvilinear, multiple and surface integrals. Finally, the proofs of mean-value theorems are given.Key word s: mean-value theorem integral; second mean-value theorems; curvilinear integral; multiple integrals; surface integrals二元函数的积分中值定理的探究前言积分中值定理是微积分中的一个重要定理,主要包含一元函数及多元函数的积分中值定理,它在数学分析中占有很重要的地位.但是许多文献,对于多元函数的曲线积分、曲面积分、重积分的中值定理的探究相对较少或相对浅略.基于这个理由,我们将借鉴一元函数的第一、第二积分中值定理的研究方法及思想,在文献[1-6]的基础上,主要讨论二元函数的积分中值定理在曲线、曲面、重积分情形上是否成立,通过研究该课题,进一步完善积分中值定理的相关理论.1预备知识1.1相关定理定理1[5]假设M 和m 分别为函数()f x 在区间[,]a b 上的最大值和最小值,且()f x 在区间[,]a b 上可积,则有()()()bam b a f x dx M b a -≤≤-⎰ ()a b <成立. 定理2[5](一元函数的介值性定理 ) 设函数()f x 在闭区间[,]a b 上连续.并且函数()f a 与()f b 函数不相等.如果μ是介于()f a 和()f b 之间的任何实数()()f a f b μ<<或()()f a f b μ>>,则至少存在一点0x ,使得0()f x μ=成立,其中0(,)x a b ∈. 定理3[5](二元函数的介值性定理)设函数f 在区域2D R ⊂上连续,若12,P P 为D 中任意两点,且12()()f P f P <,则对任何满足不等式12()()f P f P μ<<的实数μ,必存在点0p D ∈,使得0()f P μ=.定理4]3[(定积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,则在区间[,]a b 上至少存在一个点ξ,使下式()()()baf x dx f b a ξ=-⎰()a b ξ≤≤成立.定理5]3[(推广的第一积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ ()a b ξ≤≤成立. 定理6]3[(积分第二中值定理)如果函数()f x 在闭区间[,]a b 上可积,而()g x 在区间(,)a b 上单调,则在[,]a b 上至少存在一点ξ,使下式成立()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰定义1[6]设平面光滑曲线L :(),(),[,]x x t y y t t αβ==∈,两端点为((),())A x y αα和((),())B x y ββ.若()x t 在[,]αβ上不变号,称曲线L 关于坐标x 是无反向的. 若()y t 在[,]αβ上不变号,称曲线L 关于坐标y 是无反向的.2 多元函数积分中值定理的各种形式受文献[1],文献[2]的启发,本文主要对曲线积分的三种形式,二重积分及曲面积分的三种形式的中值定理进行探讨.2.1 曲线积分中值定理的推广首先对曲线积分中值定理进行探讨,在本文中只讨论曲线C :(),(),[,]x x t y y t t αβ==∈为参数方程的情形,而对于曲线C 为直角坐标形式及其它形式的积分中值定理类似地可得到. 2.1.1(第一型曲线积分中值定理)定理7 如果函数(,)f x y 在光滑有界曲线C :(),(),[,]x x t y y t t αβ==∈上连续,则在曲线C 上至少存在一点(,)ξη.使(,)(,)Cf x y ds f S ξη=⎰成立,其中Cds ⎰为曲线C 的弧长,并且Cds S =⎰.证明 因为函数(,)f x y 在光滑有界闭曲线C 上连续,所以22(,)((),())()()Cf x y ds f x t y t x t y t dt βα''=+⎰⎰记 22()((),()),()()()F t f x t y t G t x t y t ''==+由已知条件知()F t 在[,]αβ上连续,()G t 在[,]αβ上连续且非负,则根据推广的第一积分中值定理,0[,]t αβ∃∈,00(,)((),())x t y t ξη=使2222(,)((),())()()(,)()()(,)Cf x y ds f x t y t x t y t dt f x t y t dt f S ββααξηξη''''=+=+=⎰⎰⎰成立.即(,)(,)Cf x y ds f S ξη=⎰从而命题得证.在数学分析等文献中仅仅阐述了定理7,而对两个函数乘积的曲线积分中值定理未提到,下面我们将对其探究证明,并进行推广.定理8]1[如果函数(,),(,)f x y g x y 在光滑有界曲线C (),(),[,]x x t y y t t αβ==∈上连续,(,)g x y 在C 上不变号,则在曲线C 上至少存在一点(,)ξη,使(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰成立.证明 由于22(,)(,)((),())((),())()()Cf x yg x y ds f x t y t g x t y t x t y t dt βα''=+⎰⎰,由条件知,(,)g x y 在C 上不变号,则22((),())()()g x t y t x t y t ''+在[,]αβ上不变号,(,),(,)f x y g x y 又在C 上连续,由此可知22((),())((),())()()f x t y t g x t y t x t y t ''+在[,]αβ上也连续. 由定理7可知0[,]t αβ∃∈,使得00(,)((),())x t y t ξη=,有以下式子222200((),())((),())()()((),())((),())()()f x t y t g x t y t x t y t dt f x t y t g x t y t x t y t dt ββαα''''+=+⎰⎰成立. 即(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰从而命题得证.定理9如果函数(,),(,)f x y g x y 在光滑有界闭曲线(,)C A B :(),()x x t y y t ==,[,]t αβ∈上连续可积,(,)g x y 在C 上不变号,其中min (,)m f x y =,max (,)M f x y =,其中(,)x y C ∈.则在曲线(,)C A B 上至少存在一点O ,把曲线(,)C A B 分为曲线1(,)C A O 和曲线2(,)C O B ,使得12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰成立.证明 由定理8知(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰,记(,)f k ξη=,则有m k M <<.记12(,)(,)(,)(,)(,)C A O C O B CQ k g x y ds m g x y ds M g x y ds =--⎰⎰⎰Q 是关于点(,)O x y 的函数. (1)当(,)0Cg x y ds =⎰时,显然成立.(2)当(,)0Cg x y ds >⎰,当1C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds m g x y ds k m g x y ds =-=-⎰⎰⎰;由于0k m ->,,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds m g x y ds k m g x y ds =-=->⎰⎰⎰即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =-->⎰⎰⎰.当2C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-⎰⎰⎰;由于0k M -<,(,)0Cg x y ds >⎰,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-<⎰⎰⎰,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--<⎰⎰⎰.(3)当(,)0Cg x y ds <⎰,类似可讨论.综上由零点存在定理,则至少有一点O C ∈,使得0Q =,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--=⎰⎰⎰即12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰从而命题得证.以上给出了二元函数的第一型曲线积分中值定理的三种形式及证明,而我们仅仅讨论了曲线C 形如(),(),[,]x x t y y t t αβ==∈的情形,对于直角坐标的情形,是否也能得到类似的三个定理,类似可讨论.2.1.2(第二型曲线积分中值定理)第二型曲线积分中值定理定理是否成立,接下来我们对其进行探讨. 如果成立,则有如下命题.函数(,)f x y 在光滑有向曲线C 上连续,其中I 为光滑有向曲线C 在x 轴正向上的投影,其中符号“±”是由曲线C 的方向确定的,则在曲线C 上至少存在一点(,)ξη,使得(,)(,)Cf x y dx f I ξη=±⎰(1)成立.但有如下例子,设(,)f x y y =,曲线C 为圆,方程为222x y y +=.如图1图1 由积分的对称性知0C I dx -==⎰,可得(,)0f I ξη±=,而0Cy d x π=-≠⎰,故不可能存在点(,)C ξη∈使(1)成立.于是第二型曲线积分中值定理在此不成立.由此可见第二型曲线积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲线积分中值定理. 定理10]1[设(,)P x y ,(,)Q x y 在定向光滑曲线L 上连续,曲线L 上任意一点(,)x y 处与L 方向一致的切线方向与x 轴余弦为cos α,且(,)Q x y 在曲线L 上不变号,则在L 至少存在一点(,)ξη,O X Y 1使得(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰证明 因为(,)(,)(,)(,)cos LLP x y Q x y dx P x y Q x y ds α=⎰⎰且(,)P x y ,(,)Q x y 在L 上连续,(,)cos Q x y α在曲线L 上不变号,由于曲线L 光滑,从而cos α在线L 上连续,由定理8知,存在(,)L ξη∈,使得(,)(,)cos (,)(,)cos (,)(,)LLLP x y Q x y ds P Q x y ds P Q x y dx αξηαξη==⎰⎰⎰即(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰从而命题得证. 定理11[6]设曲线L 关于坐标x 是无反向的,(,)f x y ,(,)g x y 为定义在L 上的二元函数,满足(,)f x y ,(,)g x y 沿曲线L 从A 到B 关于坐标x 第二型可积,(,)f x y 在L 上是可介值的,(,)g x y 在L 上不变号.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)(,)(,)LLf x yg x y dx f g x y dx ξη=⎰⎰成立.证明过程参考文献[6].推论1设曲线L 关于坐标x 是无反向的,(,)f x y 为定义在L 上的二元函数, (,)f x y 在L 上是可介值的.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)LLf x y dx f dx ξη=⎰⎰成立.即(,)(,)Cf x y dx f I ξη=±⎰I 为光滑有向曲线C 在x 轴正向上的投影.类似的,可以推广到对坐标y 的曲线积分以及空间曲线积分上的情形.2.2二重积分中值定理的探究及推广下面给出二重积分中值定理的三种形式.定理12假设函数(,)f x y 在有界是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰成立.证明 由于函数(,)f x y 在闭区域D 上连续,假设(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤.对不等式在区域D 上进行二重积分可得,(,)DDDmds f x y ds Mds ≤≤⎰⎰⎰⎰⎰⎰即(,)DDDm ds f x y ds M ds ≤≤⎰⎰⎰⎰⎰⎰其中Dds ⎰⎰为闭区域D 的面积,我们不妨记Dds σ=⎰⎰.有 (,)Dm f x y ds M σσ≤≤⎰⎰由于0σ≠,将不等式除以σ可得1(,)Dm f x y ds M σ≤≤⎰⎰ 由于函数(,)f x y 在闭区域D 上连续,由二元函数的介值性定理知,则在D 上至少存在一点(,)ξη使得1(,)(,)Df x y ds f ξησ=⎰⎰ 成立.将上式两边同乘以σ即可得到(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰从而命题得证.定理13假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰成立.证明 不妨设(,)0((,))g x y x y D ≥∈由于函数(,)f x y 在闭区域D 上连续,(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤,从而(,)(,)(,)(,)DDDm g x y dxdy f x y g x y dxdy M g x y dxdy ≤≤⎰⎰⎰⎰⎰⎰若 (,)0Dg x y dxdy =⎰⎰则(,)(,)0Df x yg x y dxdy =⎰⎰成立.即对任意(,)D ξη∈,等式成立; 若(,)0Dg x y dxdy >⎰⎰(,)(,)(,)DDf x yg x y dxdym M g x y dxdy≤≤⎰⎰⎰⎰由二元函数的介值性定理,存在(,)D ξη∈. 使得(,)(,)(,)(,)DDf x yg x y dxdyf g x y dxdyξη=⎰⎰⎰⎰即(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰从而命题得证.定理14假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,存在两个区域满足12D D D ⋃=,12D D ⋂=∅,(,)f x y 在1D ,2D 上都可积,记min (,)m f x y =,max (,)M f x y =,其中(,x y D ∈).则有12(,)(,)(,)(,)DD D f x y g x y ds m g x y d M g x y d σσ=+⎰⎰⎰⎰⎰⎰成立.证明参照定理9的方法及思想即可以得到.2.3曲面积分中值定理的探究及推广下面分别给出第一型曲面积分与第二型曲面积分中值定理的几种形式. 2.3.1(第一型曲面积分中值定理)定理15设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)(,,)(,,)SSf x y zg x y z dS f g x y z ds ξηδ=⎰⎰⎰⎰成立,其中A 是曲面S 的面积.证明 因为22(,,)(,,)(,,(,))(,,(,))1x y SDf x y zg x y z dS f x y z x y g x y z x y z z d σ''=++⎰⎰⎰⎰因为(,,)f x y z ,(,,)g x y z 在曲面S 上连续,可得22(,,(,))(,,(,))1x y f x y z x y g x y z x y z z ''++在D 上也连续,由于(,,)g x y z 在S 上不变号,所以22(,,(,))1x y g x y z x y z z ''++在D 上不变号.由二重积分的中值定理(定理13),可知存在(,)D ξη∈,使得(,)z δξη=,且2222(,,(,))(,,(,))1(,,(,))(,,(,))1x y x y DDf x y z x yg x y z x y z z d f z g x y z x y z z d σξηξησ''''++=++⎰⎰⎰⎰(,,(,)(,,)(,,)(,,)SSf zg x y z ds f g x y z ds ξηξηξηδ==⎰⎰⎰⎰从而命题得证.推论2 设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,在S 上连续,在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)Sf x y z dS f A ξηδ=⎰⎰成立,其中A 是曲面S 的面积.定理16设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,存在两个光滑曲面满足12S S S ⋃=,12S S ⋂=∅,(,,)f x y z 在1S ,2S 上都可积,记m i n (,,m f x y z =,max (,,)M f x y z =.其中(,,)x y z S ∈则有12(,,)(,,)(,,)(,,)SS S f x y z g x y z dS m g x y z ds M g x y z ds =+⎰⎰⎰⎰⎰⎰成立.证明方法参照定理9.在这里我们证明了第一型曲面积分的积分中值定理的几种类型,并进行了推广探究,得到了相关的定理.2.3.2(第二型曲面积分中值定理)接下来我们对第二型曲面积分的积分中值定理是否成立?以及有几种类型进行探讨. 若成立,则有如下面命题.若有光滑曲面:(,),(,)yz S z x y x y D ∈,其中yz D 是有界闭区域,函数(,,)f x y z 在S 上连续,A 是S 的投影yz D 的面积,由此在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)S f x y z dydz f A ξηζ=±⎰(2)成立.但有如下例子, 设S 是2221x y z ++=在0z ≥的部分,并取球面外侧为正,把曲面表示为参量方程sin cos x ϕθ=,sin sin y ϕθ=,cos z ϕ= ,02)2πϕθπ≤≤≤≤(0可得 2(,)sin cos (,)yy y z A zz ϕθϕθϕθϕθ∂∂∂∂∂===∂∂∂∂∂ 他们在yz 平面上的投影区域如图2,图2可知222200(,)sin cos sin cos 0(,)S D D y z A dydz d d d d d d ϕθϕθππϕθϕθϕθϕϕθθϕθ-∂=====∂⎰⎰⎰⎰⎰⎰⎰⎰,从而(,,)0f A ξηζ±=,取3(,,)f x y z x =,则有254542002(,,)sin cos sin cos 05S D f x y z dydz d d d d ϕθππϕθϕθϕϕθθπ===≠⎰⎰⎰⎰⎰⎰. 故曲面S 上不存在一点(,,)ξηζ,使(2)成立. 于是第二型曲面积分中值定理在此不成立.由此可见第二型曲面积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲面积分中值定理.定理17[1]设(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S :(,)z z x y =,(,)x y D ∈上连续,(,,)Q x y z 在S 上不变号,则在S 上至少存在一点(,,)ξηζ,使得(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 证明 不妨设曲面S :(,)z z x y =,(,)x y D ∈取上侧,曲面S 上点(,,(,))x y z x y 处外法向量的方向角为α,β,γ,则221cos 1x y z z γ=''++,(,,)(,,)(,,)(,,)cos S SF x y z Q x y z dxdy F x y z Q x y z dS λ=⎰⎰⎰⎰ 由于(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S 上连续,(,,)Q x y z 在S 上不变号,曲面S 光滑,从而(,,)cos Q x y z γ在曲面S 上连续不变号,由定理15知,在曲面S 上至少存在一点(,,)ξηζ,使得(,,)(,,)cos (,,)(,,)cos S SF x y z Q x y z dS F Q x y z dS γξηςγ=⎰⎰⎰⎰ 又由于 (,,)(,,)cos (,,)(,,)S S F Q x y z dS F Q x y z dxdy ξηςγξης=⎰⎰⎰⎰即(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 从而命题得证. 结论本论文主要介绍了二元函数的曲线、曲面以及重积分的各类积分中值定理.另外,曲线积分中值定理的坐标形式,三元及三元以上函数的积分中值定理在此论文中未进行探究,望大家继续研究这些问题,进一步完善积分中值定理.参考文献[1]杜红霞.曲线积分与曲面积分中值定理[J].赣南师范学院报,2006,6:1-2.[2]冯美强.关于积分中值定理的改进[J].北京机械工业学院学报,2007,22(4):1-4.[3]皱成.二重积分中值定理的改进[J].石河子大学学报,2006,24(5):1-4.[4]王旭光.二重积分中值定理的推广[J].徐州师范大学,2007,23(4):1-6.[5]华东师范大学数学系.数学分析下册[M].高等教育出版社,2001:197-288.[6]唐国吉.第二型曲线积分中值定理[J].广西民族大学,2008,23:1-6.致谢本论文是在我的导师李云霞教授的亲切关怀和悉心指导下完成的,她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我 .在论文即将完成之际,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。