当前位置:文档之家› 二重积分学习总结

二重积分学习总结

高等数学论文《二重积分学习总结》:徐琛豪班级:安全工程02班学号:1201050221完成时间:2013年6月2日二重积分 【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。

熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

1 二重积分的概念与性质1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。

从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。

有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。

2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。

特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。

(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。

有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值围。

【主要概念梳理】1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界.分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ∆∆∆,同时用i σ∆表示它们的面积,1,2,,.i n =其中任意两小块i σ∆和()j i j σ∆≠除边界外无公共点。

i σ∆既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈∆ ,作和式1(,).ni i i i f ξησ=∆∑取极限 若i λ为i σ∆的直径,记12max{,,,}n λλλλ=,若极限1lim (,)ni i i i f λξησ→=∆∑存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为1(,)d lim (,).niii Df x y f λσξη→==∑⎰⎰ 称f (x,y )为被积函数,D 为积分区域,x 、y 为积分变元,d σ为面积微元(或面积元素).2.二重积分(,)d Df x y σ⎰⎰的几何意义(1) 若在D 上f (x,y )≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以f (x,y )为曲顶的曲顶柱体的体积.(2) 若在D 上f (x,y )≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰ 的值是负的,其绝对值为该曲顶柱体的体积(3)若f (x,y )在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的存在定理3.1若f (x,y )在有界闭区域D 上连续,则f (x,y)在D 上的二重积分必存在(即f (x,y )在D 上必可积).3.2若有界函数f (x,y )在有界闭区域D 上除去有限个点或有限个光滑曲线外都连续,则f (x,y )在D 可积.4.二重积分的性质二重积分有与定积分类似的性质.假设下面各性质中所涉及的函数f (x ,y ),g(x,y)在区域 D 上都是可积的.性质1 有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即[(,)(,)]d (,)d (,)d .DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰性质2 被积函数中的常数因子可以提到积分号前面,即(,)d (,)d ().DDkf x y k f x y k σσ=⎰⎰⎰⎰为常数性质3 若D 可以分为两个区域D 1,D 2,它们除边界外无公共点,则12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰性质4 若在积分区域D 上有f (x ,y )=1,且用S (D )表示区域D 的面积,则d ().DS D σ=⎰⎰性质5 若在D 上处处有f (x ,y )≤g (x ,y ),则有(,)d (,)d .DDf x yg x y σσ≤⎰⎰⎰⎰推论(,)d (,)d .DDf x y f x y σσ≤⎰⎰⎰⎰性质6(估值定理) 若在D 上处处有m ≤f (x ,y )≤M ,且S (D )为区域D 的面积,则()(,)d ().DmS D f x y MS D σ≤≤⎰⎰性质7(二重积分中值定理) 设f (x ,y )在有界闭区域D 上连续,则在D 上存在一点(,)ξη,使(,)d (,)().Df x y f S D σξη=⎰⎰【数学思想方法】二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。

2 在直角坐标系中二重积分的计算本章的重点是二重积分的计算问题,而直角坐标系中二重积分的 计算问题关键是如何确定积分区域及确定X 型区域还是Y 型区域,这也是本章的难点。

直角坐标系中二重积分计算的基本技巧:(1)在定积分计算中,如果D 的形状不能简单地用类似12()()x y x a x b ϕϕ≤≤⎧⎨≤≤⎩或12()()y x y c y dφφ≤≤⎧⎨≤≤⎩的形式来表示,则我们可以将D 分成若干块,并由积分性质12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰对右端各式进行计算。

(2)交换积分次序不仅要考虑到区域D 的形状,还要考虑被积函数 的特点。

如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分)形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。

但是无论是先对x 积分,再对y 积分,还是先对y 积分,再对x 积分最终计算的结果应该是相同的。

一般的处理方法是由积分限确定积分区域D ,并按照新的积分次序将二重积分化成二次积分。

具体步骤如下:①确定D 的边界曲线,画出D 的草图;②求出D 边界曲线的交点坐标;③将D 的边界曲线表示为x 或y 的单值函数; ④考虑是否要将D 分成几块; ⑤用x ,y 的不等式表示D .注:在积分次序选择时,应考虑以下几个方面的容:(ⅰ)保证各层积分的原函数能够求出;(ⅱ)若D 为X 型(Y 型),先对x (y )积分;(ⅲ)若D 既为X 型又为Y 型,且满足(ⅰ)时,要使对D 的分块最少。

(3) 利用对称性等公式简化计算 设f (x ,y )在区域D 上连续,则 ①当区域D 关于x 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=21(,)d D f x y σ⎰⎰,其中D 1为D 在x 轴上方部分。

②当区域D 关于y 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=22(,)d D f x y σ⎰⎰,其中D 2为D 在y 轴右侧部分。

③当区域D 关于x 轴和y 轴都对称若(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)(,)f x y f x y f x y -=-=,则(,)d Df x y σ⎰⎰=41(,)d D f x y σ⎰⎰,其中D 1为D 在第一象限部分。

④轮换对称式设D 关于直线y x =对称,则(,)d Df x y σ⎰⎰=(,)d Df y x σ⎰⎰.【主要概念梳理】直角坐标系中二重积分计算当被积函数f (x ,y )≥0且在D 上连续时, 若D 为 X - 型区域 12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩则21()()(,)d d d (,)d bx Dax f x y x y x f x y y ϕϕ=⎰⎰⎰⎰若D 为Y –型区域12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,则21()()(,)d d d (,)d dy D c y f x y x y y f x y x ψψ=⎰⎰⎰⎰说明:若积分区域既是X –型区域又是Y –型区域 , 则有2211()()()()(,)d d d (,)d d (,)d bx dy Dax cy f x y x y x f x y y y f x y xϕψϕψ==⎰⎰⎰⎰⎰⎰3 在极坐标系中二重积分的计算极坐标系中二重积分计算的基本技巧:(1)一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为22(),f x y +(),yf x()x f y 等形式时,计算二重积分时,往往采用极坐标系来计算。

【主要概念梳理】利用极坐标系计算二重积分在极坐标系下, 用同心圆r =常数及射线θ =常数, 分划区域D 为(1,2,,)k k n σ∆=。

则(,)d (cos ,sin )d d DDf x y f r r r r σθθθ=⎰⎰⎰⎰特别地 若12()():,r D ϕθϕθαθβ≤≤⎧⎨≤≤⎩则有21()()(cos ,sin )d d d (cos ,sin )d D f r r r r f r r r r βϕθαϕθθθθθθθ=⎰⎰⎰⎰若0():r D ϕθαθβ≤≤⎧⎨≤≤⎩则有()(cos ,sin )d d d (cos ,sin )D f r r r r f r r r βϕθαθθθθθθ=⎰⎰⎰⎰若0():02r D ϕθθπ≤≤⎧⎨≤≤⎩则有2()00(cos ,sin )d d d (cos ,sin )D f r r r r f r r πϕθθθθθθθ=⎰⎰⎰⎰9.4 二重积分的应用二重积分的应用主要在几何方面和物理方面。

相关主题