机械制造过程生产过程:从原材料进场一直到把成品制造出来的各有关劳动过程的总和工艺过程:在生产过程中凡属直接改变生产对象的尺寸形状物理化学性能以及相对位置关系的过程工艺规程:一个同样要求的零件,可以采用不同的工艺过程加工,但其中有一种是在给定的条件下最合理的,并把该过程的有关内容用文件的形式固定下来指导生产零件的生产类型分单件,成批,大量工艺过程的组成:▲工序,一个工人或一组工人在一个工作地对对同一工件或同时对几个工件所连续完成的工艺过程;安装,工件经一次装夹后完成的工艺过程;工位,工件在一次装夹中工件相对机床每占据一个确切位置所完成的工艺过程;工步,在加工表面切削刀具和切削用量都不变的情况下所完成的工艺过程;走刀,每切削一次,称为一次走刀机床夹具及设计夹具的基本组成有:定位元件,夹紧元件,导向元件,夹具体基准:用来确定生产对象几何要素几何关系所依据的那些点线面,分为设计基准(设计图样上标注设计尺寸所依据的基准)和工艺基准(工艺过程中所使用的基准)工艺基准:工序基准,在工序图上用来确定本工序加工表面尺寸形状和位置所依据的基准;定位基准:用来定位;测量基准:工件加工或加工后测量尺寸或行为误差所依据的基准;装配基准:装配时用来确定零件或部件在产品中相对位置的基准工件的装夹过程是定位和夹紧,夹紧的任务是是保持工件的定位位置不变,定位误差和夹紧误差之和为装夹误差工件装夹有找正装夹和夹具装夹两种,找正装夹风直接找正和划线找正六点定位原理:欲使工件在空间处于完全定位,就必须选用与加工件相适应的六个支撑点来限制工件在空间的六个自由度选择基准时一般遵循的原则是:基准统一原则和基准重合原则机械加工中,轴类零件常用中心孔和外圆作为定位基准。
金属切削加工过程切削运动:主进给合成,切削用量:切削速度,进给量,背吃刀量;切削层参数:公称宽度,厚度,横截面积基面:通过主切削刃上某一指定点并与该点切削速度方向垂直的面,切削平面:通过主切削刃上某一指定点并与主切削刃相切并垂直该点基面的平面,正交平面:通过主切削刃上某一指定点同时垂直该点基面和切削平面的面前角:前刀面和基面夹角,后角:主后刀面和切削平面夹角,主偏角:基面内测量的主切削刃在基面上的投影与进给运动方向夹角,副偏角:在基面内测量的副切削刃在基面上的投影与进给运动反方向间的夹角,刃倾角:在切削平面测量的主切削刃与基面间夹角刀具材料性能要求:较高硬度各耐磨性,足够强度和韧性,较高耐热性,良好导热性和耐冲击性,良好工艺性常用刀具材料:高速钢,硬质合金,工具钢,陶瓷,立方氮化硼,金刚石。
高速钢按切削性能分普通和高性能高速钢,按制造工艺分熔炼和粉末冶金高速钢变形区划分:第一第二第三变形区,剪切滑移,金属纤维化,表层金属纤维化与加工硬化前角增大,变形减小,摩擦角增大,变形增大积屑瘤:在切削过程中粘附在前刀面上呈三角状的硬块积屑瘤对对切削过程的影响:使刀具前角变大,切削力减小:使切削厚度变化;加工表面粗糙度增大;影响刀具寿命。
可采取的措施:正确选用切削速度,使切削速度避开产生积屑瘤的区域;使用润滑性能好的切削液;增大刀具前角;适当提高工件材料硬度切削类型:带状切削,加工塑形金属,切削厚度较小,切削速度高,前角较大易产生;节状切削,速度低,厚度大,前角小;粒状切削,剪切面上的切应力超过材料的断裂强度;崩碎切削,切削脆性金属时切削类型控制:断屑槽,改变刀具角度,调整切削用量切削力:切削时被加工材料发生变形而成为切屑所需的力切削热来源两方面:切削层金属发生弹性和塑形变形所消耗的能量变为热能;切屑与前刀面,工件与后刀面间的摩擦热刀具磨损形态:前刀面磨损(崩刃),后刀面磨损,边界磨损刀具磨损机制:硬质点划痕,低速刀具的磨损原因;冷焊粘结,中等偏低切削速度;扩散磨损,高温;化学磨损较高切削速度。
刀具磨损三阶段:初期,正常,急剧磨损阶段刀具破损:在切削加工中,刀具没有经过正常磨损,而在很短时间突然损坏。
破损形式:脆性破损(崩刃,碎断,剥落,裂纹破损)和塑性破损切削用量选用原则:尽量选取大的背吃刀量,选取大的进给量,最后据切削用量手册确定切削速度刀具的切削性能主要由刀具材料的性能和刀具几何参数决定砂轮决定特性:磨料,粒度,结合剂,硬度磨削过程中粒度对工件的作用包括滑擦阶段,耕犁阶段,形成切削磨削力三分力:主磨削力,背向力(最大),进给力金属切削加工方法与装备在车床上钻孔和在钻床上钻孔产生的“引偏”,对所加工的孔有何不同影响?在随后的精加工中,哪一种比较容易纠正?为什么?——在车床上钻孔,钻头的引偏将引起工件孔径的变化,并产生锥度,而孔的轴线仍然是直线,且与工件回转轴线一致。
在钻床钻孔,钻头引偏时,被加工孔的轴线将发生歪斜。
在车床上引偏的孔容易纠正一些,因为其轴线没有改变,因而经过精加工仍然是直孔,而后者轴线倾斜,精加工后是斜孔 2.镗床上镗孔和车床上镗孔有何不同,分别用于什么场合?——在车床上镗孔只能镗中心线与回转中心垂合的孔,因而孔的位置受到限制而在镗床上可以加工任何位置大小的孔。
车床上镗孔一般用于镗中心孔而镗床上镗孔广泛用于各种孔的粗精加工。
3.拉削速度并不高,但拉削却是一种高生产率的加工方法,原因何在?拉空为什么无需精确地预加工?拉削能否保持孔与外圆的同轴度要求?——拉削生产率高是因为在拉削长度内,拉刀的同时工作齿数多,并且一把(或一组)拉刀可连续完成粗切,半精切,精切及挤压修光和校准加工,故生产率高。
拉孔时拉削表面的形状位置,尺寸精度和表面质量主要依靠拉刀设计,制造及正确使用保证,因此如果选好了拉刀就无需精确的预加工,且能保持孔与外圆的同轴度1.滚刀的实质:相互呲合的一对渐开线圆柱齿轮滚到的基本蜗杆:齿轮滚刀的全部切削刃均处于这一蜗杆的渐开螺旋面上,因此这种滚刀称为渐开线滚刀,而这一蜗杆则称为滚到的基本蜗杆。
生产中标准齿轮滚刀采用的基本蜗杆:常用轴线剖面截行为直线的阿基米德蜗杆,成为法向剖面截行为直线的法向直廊蜗杆2.比较滚齿和插齿的特点及适用范围:滚齿:加工过程是连续的,生产率高,加工的操作和调整十分简便,比插齿具有更好的通用性;滚齿加工容易保证被加工齿轮有较精确地齿距,适用于绝大多数的齿轮的加工。
插齿:一把插齿刀可以加工出模数相同而齿数不同的齿轮,另外它还有一些特殊的用途。
适用于内齿,精密齿条等别的齿轮刀具难以加工的齿轮。
3.为什么插齿加工的齿形精度较高:插齿加工是一种利用平行轴线齿轮呲合原理进行齿轮加工的展成切齿方法,并可以通过改变切削用量来增加包络刃数,故插齿加工加工的齿形精度较高。
4.螺纹加工有那几种方法?各有什么特点?车削加工:加工生产率低,劳动强度大,对工人的技术要求较高用盘铣刀铣:生产率较高,劳动强度不太大,常用于成批生产旋风铣削螺纹:切削速度高,走到齿数少,加工生产率高,适用范围广,而且其所用的刀具为普通硬质合质切刀,成本低,易换易磨。
攻内螺纹:加工精度高,稳定套切外螺纹:根牙套螺纹可用于各种批量的生产搓螺纹,滚螺纹:螺纹机械强度高,材料利用率高,加工过程自动化程度高,螺纹表面质量好,在螺栓,螺钉,螺母等标准间的大量生产中得到广泛应用。
螺纹磨削:用于精度要求高的传动螺纹和测量螺纹的精加工研磨螺纹:加工出来的螺纹表面质量和精度要求都很高。
加工类型与运动类加工类型运动类型主运动进给运动车削工件的旋转运动车刀的纵向、横向运动钻削钻头的旋转运动钻头的垂直运动端面铣削铣刀的旋转运动工件的水平运动龙门刨削刨刀的往复运动工件的间歇运动外圆磨削砂轮的旋转运动工件的旋转运动 1.计算切削用量:asp=(dw-dm)/2 Vf=f*n Vc=πdw*n/1000 2.常用硬质合金有:钨钴类硬质合金(wc+co),钨钛钴类硬质合金(wc+tic+co),钨钛钽钴类,碳化钛基硬质合金,涂层硬质合金。
钨钛钴类硬质合金适合加工钢料钨钴类硬质合金适用加工铸铁等脆性材料。
同种牌号中,30适合粗加工,01适合精加工。
因为30含钴量较多,其抗弯强度机械制机械制造中的加工方法:材料去除加工,材料成型加工,材料累积加工零件表面可看做是母线沿导线运动的轨迹,母线和导线称为形成表面的发生线,表面按形状分为:旋转,纵向,螺旋,复杂表面表面发生线的形成分:轨迹法,成形发,相切法,展成法机床的基本结构和传动:动力源,为机床执行机构的运动提供动力;运动执行机构,是机床执行运动的部件,它们带动工件或刀具旋转或移动;传动机构,将机床动力源的运动和动力传给运动执行机构,或将运动由一个执行机构传递到另一个执行机构;控制系统和伺服系统,对机床运动进行控制,实现各运动间的准确协调;支撑系统,机床机械本身,属于机床的基础部分外圆磨削与外圆车削相比有何特点(试从机床、刀具、加工过程等方面进行分析)?并以此说明外圆磨削比外圆车削质量高的原因。
答: 1)机床结构方面:磨床结构较车床简单、紧凑、传动链更优化; 2)刀具方面:砂轮加工效果较车刀精细、高效; 3)加工过程方面:磨床操作方便,易于控制,主轴旋转平稳。
由上可以看出:对于外圆磨削,操作方便、传动链短、主轴旋转平稳,刚度大、砂轮加工精度高;对于外圆车削,传动链长、主轴旋转平稳度不够,刚度不大、车刀加工精度不高。
因此,外圆磨削比外圆车削质量要高。
3-11 为什么车床用丝杆和光杆分别担任车螺纹和车削进给的传动?如果只用其中的一个既车螺纹又传动进给,会产生什么问题?答:车螺纹时,要求主轴与刀架之间有严格的传动比,所以,只能用丝杆;车削进给时,不要求主轴与刀架之间有严格的传动比,用光杆更经济高效;若用丝杆既车螺纹又传动进给,对于车螺纹没有问题(影响),对于传动进给有时不能满足快速进给要求,影响加工效率,总体上还会影响丝杆使用寿命;若用光杆既车螺纹又传动进给,对于传动进给没有问题(影响),对于车螺纹,由于不能保证主轴与刀架之间的严格传动比,无法正确加工。
3-13 无心外圆磨削与普通外圆磨削相比较,有什么优点?答:1)生产率较高,这是由于省去了打中心孔的工序,省去了装夹工件的时间。
此外,由于有导轮和托板沿全长支承工件,刚度差的工件也可以用较大的切削用量进行磨削。
2磨削锁获得的外圆表面的尺寸精度和形状精度都比较高,表面质量也比较好,可获得较细的表面粗糙度。
3如果配备适当的自动装卸工件的机构,无心磨削法比普通外圆磨削法更容易实现加工过程自动化。
4无心磨削的纵磨法主要用于大批量生产中磨削细长光滑轴及销钉,小套等零件的外圆;横磨法主要用于磨削带台肩而又较短的外圆,锥面和成形面等。
3-14 试无心外圆磨削的工作原理。
答:进行无心外圆磨削时,工件放在磨削砂轮和导轮之间,由托板支承进行磨削。
此时是以工件被磨削的外圆表面自身定位,而不是用顶尖或卡盘来定位。