在地下结构分析中的应用北京迈达斯技术有限公司某地铁车站整体分析设计广州地铁某车站钢结构抗震分析某地铁车站盾构井分析设计某地铁车站结构分析设计某地铁车站出入口实体细部分析某地铁4号线明挖施工分析某地铁车站端部分析设计丰富的单元类型及塑性本构midas Gen提供了除常规的梁单元、板单元外还提供用于模拟土体的平面应变单元、实体单元方便用于模拟土体材料。
当考虑塑性模拟时,midas Gen提供了摩尔-库伦、德鲁克-普拉格等本构。
方便的土体约束施加方法可采用软件内置的“连接”边界条件,用与土体等刚度的弹性边界元(俗称土弹簧)来模拟结构周边的土体,并与结构共同作用,可进行地下结构的反应谱分析和动力时程分析。
Excel与模型联动在施加土体强制位移及按照有限元法确定土体弹簧时,利用Excel与软件表格功能实现快速处理模型。
Excel粘贴土弹簧自动考虑单元尺寸修正midas Gen在定义土体弹性边界时,仅需定义土体的基床系数及弹簧方向,软件自动考虑单元尺寸确定土体弹簧刚度,且能考虑土体的仅受压性质。
荷载施加方便除了与excel联动方便施加土体强制位移,对梁及板还可以方便的施加如土压力、水压力等均布或者三角形、梯形荷载。
丰富的结果输出midas Gen提供了丰富后处理结果。
包含位移、内力、应力及局部方向内力合力等结果。
方便进行配筋设计及生成报告。
输出钢筋混凝土平法配筋简图、配筋率简图、面积简图输出满足国内外规范要求的中英文构件计算书平法配筋输出和中英文构件程序内包含有钢结构、钢筋砼、钢骨混凝土设计功能可对钢管混凝土构件、型钢混凝土构件进行设计和验算单体构件设计和验算结果专业的技术支持分公司技术支持、总公司技术部、开发部共同参与官方技术支持论坛:/bbs 常见问题月刊:“结构帮”及时倾听和解决客户问题,用户满意度高完善的技术服务1.超长混凝土地下结构组合应力弹塑性时程分析-中国建筑科学研究院建筑结构研究所目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计地下结构后浇带布置超长混凝土地下结构整体模型1.超长混凝土地下结构组合应力弹塑性时程分析-中国建筑科学研究院建筑结构研究所目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计1.超长混凝土地下结构组合应力弹塑性时程分析-中国建筑科学研究院建筑结构研究所目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计1.超长混凝土地下结构组合应力弹塑性时程分析-中国建筑科学研究院建筑结构研究所目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计结论:组合应力弹塑性时程分析时,假定在各计算时段内,混凝土收缩变形、混凝土变形模量、重力荷载效应、各浇筑段边界约束条件为常量,在总计算时长内这些参数均为时间的函数。
因此与现有相应弹性分析( 设整体结构同时成型,各参数与时间进程无关) 相比,本文方法的不确定成分较少,计算仿真度更高,分析结果更接近实际情况。
关于超长混凝土结构,目前设计与施工控制裂缝的常用措施主要基于概念、定性判断及部分工程经验,无法根据整体结构的组合拉应力分布规律定量预测各项措施的综合效果,其可靠性不能完全满足工程需求。
当超长混凝土结构的构造与受力较复杂时,这些现有常用抗裂措施的不确定性与盲目性更加明显。
为解决此问题,本文方法可作为一种有效的补充手段,用于定量控制超长混凝土结构各阶段裂缝。
1.超长混凝土地下结构组合应力弹塑性时程分析-中国建筑科学研究院建筑结构研究所目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计2.地下变电站温度裂缝发展分析与控制-上海电力设计院有限公司目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析220 kV 济南变电站平面图⑩地铁车站梁柱节点设计220 kV 济南变电站立面图目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计2.地下变电站温度裂缝发展分析与控制-上海电力设计院有限公司济南变电站主体结构与地基基础计算模型2.地下变电站温度裂缝发展分析与控制-上海电力设计院有限公司目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计836 h 时地下3 层结构裂缝指数空间分布目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计2.地下变电站温度裂缝发展分析与控制-上海电力设计院有限公司600 h 时地下3 层结构的温度场地下3 层结构温度峰值随时间变化地下3 层关键节点处裂缝指数随时间变化目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计2.地下变电站温度裂缝发展分析与控制-上海电力设计院有限公司510 h 时地下3 层楼板温度场地下3 层楼板温度峰值处温度随时间变化1 172 h 地下3 层楼板裂缝主要发展区域示意图3.反应位移法在地铁抗震计算中的应用-中铁第五勘察设计院集团有限公司城市轨道交通设计院目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计3.反应位移法在地铁抗震计算中的应用-中铁第五勘察设计院集团有限公司城市轨道交通设计院目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计3.反应位移法在地铁抗震计算中的应用-中铁第五勘察设计院集团有限公司城市轨道交通设计院目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计3.反应位移法在地铁抗震计算中的应用-中铁第五勘察设计院集团有限公司城市轨道交通设计院目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计结论:1.在八度地震作用下,车站结构各构件的的控制组合多为标准荷载组合与人防荷载组合,地震荷载组合在地铁结构设计中不起控制作用。
2.地下结构抗震设计时,对于模量差异较大的多层土宜考虑土层差异影响,应要求地震安全性评价报告编制单位提供地层分层反应位移,以作为抗震设计依据。
同时,应加强抗震构造措施,以将震害影响降到最低。
4.基于MIDAS_Gen的地下结构抗震设计分析-广州大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计珠江新城地下空间某典型横断面工程结构标准断面4.基于MIDAS_Gen的地下结构抗震设计分析-广州大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计地震力作用下结构轴向应力云图4.基于MIDAS_Gen的地下结构抗震设计分析-广州大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计地震力作用下结构最大组合应力云图4.基于MIDAS_Gen的地下结构抗震设计分析-广州大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计结论:考虑土对结构的作用与不考虑土对结构的作用,基于MIDAS/Gen 的反应谱分析法,分析周围土体对结构构件应力的影响,从而突出地下结构抗震设计的重要性。
因此,在做抗震设计时,地下结构(包括附建式地下结构)的抗震应引起工程师的重视,更不能将其等同于地上建筑结构进行设计。
5.基于Midas和ANSYS的已建半地下贮液池抗震性能分析-天津大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计5.基于Midas和ANSYS的已建半地下贮液池抗震性能分析-天津大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计5.基于Midas和ANSYS的已建半地下贮液池抗震性能分析-天津大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计5.基于Midas和ANSYS的已建半地下贮液池抗震性能分析-天津大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计5.基于Midas和ANSYS的已建半地下贮液池抗震性能分析-天津大学目录①组合结构弹塑性时程分析②地下结构温度裂缝分析③地铁抗震分析④地下结构抗震分析⑤地下贮液池抗震分析⑥深基坑围护结构优化分析⑦桥头堡桩基设计⑧地铁站主体结构设计⑨车站施工阶段分析⑩地铁车站梁柱节点设计结论:1.通过计算两个典型截面③-③轴和B-B轴的自振周期,并与三维模型对应的自振周期进比较,两者相差很小,说明选取的典型截面比较合适;2.对于半地下结构,埋置深度越深,其地震响应相对越小,由此产生的位移也相对较小,但对于伸出地面部分,由于没有周围土的约束,产生较大的位移;同时各点的位移时程曲线变化规律大致相同,位移幅值和应力幅值出现的时刻与加速度幅值对应时刻相接近;3.通过震度法和动力时程方法的相互比较,验证了震度法的可靠性及安全性,为我国抗震验算提供一种新的思路。