/forum-viewthread-tid-9141-extra-page%3D1-page-1.html(个人收集关于小波分析的matlab程序)小波滤波器构造和消噪程序 (1)小波谱分析mallat算法经典程序 (7)小波包变换分析信号的MATLAB程序 (9)利用小波变换实现对电能质量检测的算法实现 (15)基于小波变换的图象去噪Normalshrink算法 (17)小波滤波器构造和消噪程序1.重构% mallet_wavelet.m% 此函数用于研究Mallet算法及滤波器设计% 此函数仅用于消噪a=pi/8; %角度赋初值b=pi/8;%低通重构FIR滤波器h0(n)冲激响应赋值h0=cos(a)*cos(b);h1=sin(a)*cos(b);h2=-sin(a)*sin(b);h3=cos(a)*sin(b);low_construct=[h0,h1,h2,h3];L_fre=4; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_high)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度n=1:L_signal; %信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-20*n*t);figure(1);plot(y);title('原信号');check1=sum(high_decompose); %h0(n)性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');l_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull);h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %信号重构compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %重构信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较2.消噪、% 此函数用于研究Mallet算法及滤波器设计% 此函数用于消噪处理%角度赋值%此处赋值使滤波器系数恰为db9%分解的高频系数采用db9较好,即它的消失矩较大%分解的有用信号小波高频系数基本趋于零%对于噪声信号高频分解系数很大,便于阈值消噪处理[l,h]=wfilters('db10','d');low_construct=l;L_fre=20; %滤波器长度low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器if(mod(i_high,2)==0);coefficient=-1;elsecoefficient=1;endhigh_construct(1,i_high)=low_decompose(1,i_high)*coefficient;endhigh_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度n=1:L_signal; %原始信号赋值f=10;t=0.001;y=10*cos(2*pi*50*n*t).*exp(-30*n*t);zero1=zeros(1,60); %信号加噪声信号产生zero2=zeros(1,30);noise=[zero1,3*(randn(1,10)-0.5),zero2];y_noise=y+noise;figure(1);subplot(2,1,1);plot(y);title('原信号');subplot(2,1,2);plot(y_noise);title('受噪声污染的信号');check1=sum(high_decompose); %h0(n),性质校验check2=sum(low_decompose);check3=norm(high_decompose);check4=norm(low_decompose);l_fre=conv(y_noise,low_decompose); %卷积l_fre_down=dyaddown(l_fre); %抽取,得低频细节h_fre=conv(y_noise,high_decompose);h_fre_down=dyaddown(h_fre); %信号高频细节figure(2);subplot(2,1,1)plot(l_fre_down);title('小波分解的低频系数');subplot(2,1,2);plot(h_fre_down);title('小波分解的高频系数');% 消噪处理for i_decrease=31:44;if abs(h_fre_down(1,i_decrease))>=0.000001h_fre_down(1,i_decrease)=(10^-7);endendl_fre_pull=dyadup(l_fre_down); %0差值h_fre_pull=dyadup(h_fre_down);l_fre_denoise=conv(low_construct,l_fre_pull);h_fre_denoise=conv(high_construct,h_fre_pull);l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响h_fre_keep=wkeep(h_fre_denoise,L_signal);sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构%平滑处理for j=1:2for i=60:70;sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/2;end;end;compare=sig_denoise-y; %与原信号比较figure(3);subplot(3,1,1)plot(y);ylabel('y'); %原信号subplot(3,1,2);plot(sig_denoise);ylabel('sig\_denoise'); %消噪后信号subplot(3,1,3);plot(compare);ylabel('compare'); %原信号与消噪后信号的比较小波谱分析mallat算法经典程序clc;clear;%% 1.正弦波定义f1=50; % 频率1f2=100; % 频率2fs=2*(f1+f2); % 采样频率Ts=1/fs; % 采样间隔N=120; % 采样点数n=1:N;y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合figure(1)plot(y);title('两个正弦信号')figure(2)stem(abs(fft(y)));title('两信号频谱')%% 2.小波滤波器谱分析h=wfilters('db30','l'); % 低通g=wfilters('db30','h'); % 高通h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)figure(3);stem(abs(fft(h)));title('低通滤波器图')figure(4);stem(abs(fft(g)));title('高通滤波器图')%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)figure(5); % 信号图subplot(2,1,1)plot(real(sig1));title('分解信号1')subplot(2,1,2)plot(real(sig2));title('分解信号2')figure(6); % 频谱图subplot(2,1,1)stem(abs(fft(sig1)));title('分解信号1频谱')subplot(2,1,2)stem(abs(fft(sig2)));title('分解信号2频谱')%% 4.MALLET重构算法sig1=dyaddown(sig1); % 2抽取sig2=dyaddown(sig2); % 2抽取sig1=dyadup(sig1); % 2插值sig2=dyadup(sig2); % 2插值sig1=sig1(1,[1:N]); % 去掉最后一个零sig2=sig2(1,[1:N]); % 去掉最后一个零hr=h(end:-1:1); % 重构低通gr=g(end:-1:1); % 重构高通hr=circshift(hr',1)'; % 位置调整圆周右移一位gr=circshift(gr',1)'; % 位置调整圆周右移一位sig1=ifft(fft(hr).*fft(sig1)); % 低频sig2=ifft(fft(gr).*fft(sig2)); % 高频sig=sig1+sig2; % 源信号%% 5.比较figure(7);subplot(2,1,1)plot(real(sig1));title('重构低频信号');subplot(2,1,2)plot(real(sig2));title('重构高频信号');figure(8);subplot(2,1,1)stem(abs(fft(sig1)));title('重构低频信号频谱');subplot(2,1,2)stem(abs(fft(sig2)));title('重构高频信号频谱');figure(9)plot(real(sig),'r','linewidth',2);hold on;plot(y);legend('重构信号','原始信号')title('重构信号与原始信号比较')小波包变换分析信号的MATLAB程序%t=0.001:0.001:1;t=1:1000;s1=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));for t=1:500;s2(t)=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));endfor t=501:1000;s2(t)=sin(2*pi*200*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));endsubplot(9,2,1)plot(s1)title('原始信号')ylabel('S1')subplot(9,2,2)plot(s2)title('故障信号')ylabel('S2')wpt=wpdec(s1,3,'db1','shannon');%plot(wpt);s130=wprcoef(wpt,[3,0]);s131=wprcoef(wpt,[3,1]);s132=wprcoef(wpt,[3,2]);s133=wprcoef(wpt,[3,3]);s134=wprcoef(wpt,[3,4]);s135=wprcoef(wpt,[3,5]);s136=wprcoef(wpt,[3,6]);s137=wprcoef(wpt,[3,7]);s10=norm(s130);s11=norm(s131);s12=norm(s132);s13=norm(s133);s14=norm(s134);s15=norm(s135);s16=norm(s136);s17=norm(s137);st10=std(s130);st11=std(s131);st12=std(s132);st13=std(s133);st14=std(s134);st15=std(s135);st16=std(s136);st17=std(s137);disp('正常信号的特征向量');snorm1=[s10,s11,s12,s13,s14,s15,s16,s17]std1=[st10,st11,st12,st13,st14,st15,st16,st17]subplot(9,2,3);plot(s130);ylabel('S130');subplot(9,2,5);plot(s131);ylabel('S131');subplot(9,2,7);plot(s132);ylabel('S132');subplot(9,2,9);plot(s133);ylabel('S133');subplot(9,2,11);plot(s134);ylabel('S134');subplot(9,2,13);plot(s135);ylabel('S135');subplot(9,2,15);plot(s136);ylabel('S136');subplot(9,2,17);plot(s137);ylabel('S137');wpt=wpdec(s2,3,'db1','shannon');%plot(wpt);s230=wprcoef(wpt,[3,0]);s231=wprcoef(wpt,[3,1]);s232=wprcoef(wpt,[3,2]);s233=wprcoef(wpt,[3,3]);s234=wprcoef(wpt,[3,4]);s235=wprcoef(wpt,[3,5]);s236=wprcoef(wpt,[3,6]);s237=wprcoef(wpt,[3,7]);s20=norm(s230);s21=norm(s231);s22=norm(s232);s23=norm(s233);s24=norm(s234);s25=norm(s235);s26=norm(s236);s27=norm(s237);st20=std(s230);st21=std(s231);st22=std(s232);st23=std(s233);st24=std(s234);st25=std(s235);st26=std(s236);st27=std(s237);disp('故障信号的特征向量');snorm2=[s20,s21,s22,s23,s24,s25,s26,s27] std2=[st20,st21,st22,st23,st24,st25,st26,st27]subplot(9,2,4);plot(s230);ylabel('S230');subplot(9,2,6);plot(s231);ylabel('S231');subplot(9,2,8);plot(s232);ylabel('S232');subplot(9,2,10);plot(s233);ylabel('S233');subplot(9,2,12);plot(s234);ylabel('S234');subplot(9,2,14);plot(s235);ylabel('S235');subplot(9,2,16);plot(s236);ylabel('S236');subplot(9,2,18);plot(s237);ylabel('S237');%fftfigurey1=fft(s1,1024);py1=y1.*conj(y1)/1024;y2=fft(s2,1024);py2=y2.*conj(y2)/1024;y130=fft(s130,1024);py130=y130.*conj(y130)/1024;y131=fft(s131,1024);py131=y131.*conj(y131)/1024;y132=fft(s132,1024);py132=y132.*conj(y132)/1024;y133=fft(s133,1024);py133=y133.*conj(y133)/1024;y134=fft(s134,1024);py134=y134.*conj(y134)/1024; y135=fft(s135,1024);py135=y135.*conj(y135)/1024; y136=fft(s136,1024);py136=y136.*conj(y136)/1024; y137=fft(s137,1024);py137=y137.*conj(y137)/1024;y230=fft(s230,1024);py230=y230.*conj(y230)/1024; y231=fft(s231,1024);py231=y231.*conj(y231)/1024; y232=fft(s232,1024);py232=y232.*conj(y232)/1024; y233=fft(s233,1024);py233=y233.*conj(y233)/1024; y234=fft(s234,1024);py234=y234.*conj(y234)/1024; y235=fft(s235,1024);py235=y235.*conj(y235)/1024; y236=fft(s236,1024);py236=y236.*conj(y236)/1024; y237=fft(s237,1024);py237=y237.*conj(y237)/1024;f=1000*(0:511)/1024; subplot(1,2,1);plot(f,py1(1:512));ylabel('P1');title('原始信号的功率谱') subplot(1,2,2);plot(f,py2(1:512));ylabel('P2');title('故障信号的功率谱') figuresubplot(4,2,1);plot(f,py130(1:512));ylabel('P130');title('S130的功率谱') subplot(4,2,2);plot(f,py131(1:512));title('S131的功率谱') subplot(4,2,3);plot(f,py132(1:512)); ylabel('P132'); subplot(4,2,4);plot(f,py133(1:512)); ylabel('P133'); subplot(4,2,5);plot(f,py134(1:512)); ylabel('P134'); subplot(4,2,6);plot(f,py135(1:512)); ylabel('P135'); subplot(4,2,7);plot(f,py136(1:512)); ylabel('P136'); subplot(4,2,8);plot(f,py137(1:512)); ylabel('P137'); figuresubplot(4,2,1);plot(f,py230(1:512)); ylabel('P230');title('S230的功率谱') subplot(4,2,2);plot(f,py231(1:512)); ylabel('P231');title('S231的功率谱') subplot(4,2,3);plot(f,py232(1:512)); ylabel('P232'); subplot(4,2,4);plot(f,py233(1:512)); ylabel('P233'); subplot(4,2,5);plot(f,py234(1:512)); ylabel('P234'); subplot(4,2,6);plot(f,py235(1:512)); ylabel('P235'); subplot(4,2,7);plot(f,py236(1:512));subplot(4,2,8);plot(f,py237(1:512));ylabel('P237');figure%plottree(wpt)利用小波变换实现对电能质量检测的算法实现N=10000;s=zeros(1,N);for n=1:Nif n<0.4*N||n>0.8*Ns(n)=31.1*sin(2*pi*50/10000*n);elses(n)=22.5*sin(2*pi*50/10000*n);endendl=length(s);[c,l]=wavedec(s,6,'db5'); %用db5小波分解信号到第六层subplot(8,1,1);plot(s);title('用db5小波分解六层:s=a6+d6+d5+d4+d3+d2+d1');Ylabel('s');%对分解结构【c,l】中第六层低频部分进行重构a6=wrcoef('a',c,l,'db5',6);subplot(8,1,2);plot(a6);Ylabel('a6');%对分解结构【c,l】中各层高频部分进行重构for i=1:6decmp=wrcoef('d',c,l,'db5',7-i);subplot(8,1,i+2);plot(decmp);Ylabel(['d',num2str(7-i)]);end%-----------------------------------------------------------rec=zeros(1,300);rect=zeros(1,300);ke=1;u=0;d1=wrcoef('d',c,l,'db5',1);figure(2);plot(d1);si=0;N1=0;N0=0;sce=0;for n=20:N-30rect(ke)=s(n);ke=ke+1;if(ke>=301)if(si==2)rec=rect;u=2;end;si=0;ke=1;end;if(d1(n)>0.01) % the condition of abnormal append.N1=n;if(N0==0)N0=n;si=si+1;end;if(N1>N0+30)Nlen=N1-N0;Tab=Nlen/10000;end;end;if(si==1)for k=N0:N0+99 %testing of 1/4 period signals to sce=sce+s(k)*s(k)/10000;end;re=sqrt(sce*200) %re indicate the pike value of .sce=0;si=si+1;end;end;NlenN0n=1:300;figure(3)plot(n,rec);基于小波变换的图象去噪Normalshrink算法function [T_img,Sub_T]=threshold_2_N(img,levels)% reference :image denoising using wavelet thresholding[xx,yy]=size(img);HH=img((xx/2+1):xx,(yy/2+1):yy);delt_2=(std(HH(:)))^2;%(median(abs(HH(:)))/0.6745)^2;%T_img=img;for i=1:levelstemp_x=xx/2^i;temp_y=yy/2^i;% belt=1.0*(log(temp_x/(2*levels)))^0.5;belt=1.0*(log(temp_x/(2*levels)))^0.5; %2.5 0.8%HLHL=img(1:temp_x,(temp_y+1):2*temp_y);delt_y=std(HL(:));T_1=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%T_HL=sign(HL).*max(0,abs(HL)-T_1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%T_img(1:temp_x,(temp_y+1):2*temp_y)=T_HL;Sub_T(3*(i-1)+1)=T_1;%LHLH=img((temp_x+1):2*temp_x,1:temp_y);delt_y=std(LH(:));T_2=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%T_LH=sign(LH).*max(0,abs(LH)-T_2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%T_img((temp_x+1):2*temp_x,1:temp_y)=T_LH;Sub_T(3*(i-1)+2)=T_2;%HHHH=img((temp_x+1):2*temp_x,(temp_y+1):2*temp_y);delt_y=std(HH(:));T_3=belt*delt_2/delt_y;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%T_HH=sign(HH).*max(0,abs(HH)-T_3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%T_img((temp_x+1):2*temp_x,(temp_y+1):2*temp_y)=T_HH;Sub_T(3*(i-1)+3)=T_3;end。