当前位置:文档之家› 控制理论(状态空间表达式)

控制理论(状态空间表达式)


R L x1 x Ka 2 J x3 0
三 . 由描述系统运动过程的高阶微分方程或传递函数
出发建立状态空间表达式
从经典控制理论中知道,任何一个线性系统都可 以用下列线性微分方程表示:
其传递函数就是 输出信号y(t) 的Laplace变换 Y(S)与输入信号u(t) 的Laplace变换U(S)之比,其形式
Kb 1 L x1 L u B x2 0 J
若指定角速度为输出,则
x1 y x2 0 1 x2
若指定电动机的转角为输出,则上述两个状态变量 不足以对系统的时域行为加以全面描述,必须增添 一个状态变量 x3
数可写成如下形式:
(bm1 an1bm )s n1 (bm2 an2bm )s n2 (b1 a1bm )s (b0 a0bm ) W (s) bm s n an1s n1 a1s a0
这意味着输出含有与输入直接关联的项. 应该指出:从传递函数求得的状态空间表达式并 不是唯一的 一.传递函数中没有零点时的实现 此时,系统的微分方程为
【例1-2】 RLC电路如下图所示. 以ei作为系统的
控制输入u(t),eo作为系统输出y(t)。建立系统的 动态方程。
解: 该R-L-C电路有两个独立的储能元件L和C,可以取 电容C两端电压和流过电感L的电流 作为系统的两个状 态变量,分别记作x1和x2。根据基尔霍夫电压定律和 R、L、C元件的电压电流关系,可得到下列方程:
T
三.状态空间
以状态变量 x1 , x2 , xn 为坐标轴所构成的n维 空间,称为状态空间. 四.
状态方程
由系统的状态变量构成的一阶微分方程组称为
系统的状态方程.
五. 输出方程
在指定系统输出的情况下,该输出与状态变量间
的函数关系式,称为系统的输出方程.
六. 状态空间表达式
状态方程和输出方程总和起来,构成对一个系统 完整的动态描述,称为系统的状态空间表达式.
§1-2状态空间表达式的建立
用状态空间法分析系统时,首先要建立给定系 统的状态空间表达式.这个表达式一般可以从三 个途径求得:一是由系统方块图 来建立,即根据 系统各个环节的实际连接,写出相应的状态空间 表达式;二是从系统的物理或化学的机理 出发进 行推导;三是由描述系统运动过程的高阶微分方 程或传递函数 予以演化而得.



控制系统状态空间表达式
§1-0 概述 §1-1 状态变量及状态空间表达式 §1-2 状态空间表达式的建立 §1-3 状态向量的线性变换 §1-4 从状态空间表达式求系统传递函数阵 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
§1-0 概 述
§1-1 状态变量及状态空间表达式 §1-2 状态空间表达式的建立 §1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
根据函数向量的不同情况,一般控制系统可以分 为如下四种:
线性定常(时不变)系统
线性时变系统; 非线性定常系统;
非线性时变系统。
在本课程中,我们主要考虑线性定常系统(LTI)。 这时,系统的动态方程可以表示如下:
单输入-单输出定常系统,其状态变量为 x1 , x2 , xn 则状态方程的一般形式为:
整理得:
写成矢量形式为:
这就是如图2-3所示RLC电网络的动态方程。
【例1-3】 多输入多输出系统(MIMO) 如图2-5所示机 械系统,质量 m1 , m2 各受到 f1 , f 2 的作用,其相对静平衡 位置的位移分别为 x1 , x2 。
解:根据牛顿定律,分别对 们有:
m1 , m2
进行受力分析,我
由电磁感应关系有 式中
e Kb
e 为反电动势; Ka , Kb 转矩常数和反电动势常数.
Kb 1 R 整理得: di i u dt L L L d K a B i dt J J

x1 i, x2
代入,有
R x1 L x K 2 a J
用由状态变量构成的一阶微分方程组来描述的.它能 反映系统的全部独立变量的变化,从而能同时确定系 统的全部内部运动状态,而且还可以方便地处理初始 条件.这样,在设计控制系统时,不再只局限于输入 量,输出量,误差量,为提高系统性能提供了有力的 工具.
§1-0 概 述
§1-1 状态变量及状态空间表达式
§1-2 状态空间表达式的建立 §1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
用向量矩阵表示状态空间表达式则为:
x Ax bu y C x
T
对于一个复杂系统,具有r个输入,m个输出, 此时状态方程和输出方程变为:
写成矢量矩阵形式:
上式中,Anxn称为系统矩阵,Bnxr称为 输入(或控制)矩阵。A由系统内部结构及其 参数决定,体现了系统内部的特性,而B则 主要体现了系统输入的施加情况。 • Cmxn矩阵称为输出矩阵,它表达了输 出变量与状态变量之间的关系,Dmxr矩阵称 为直接传递矩阵,表示了控制向量U直接转 移到输出变量Y的转移关系。 •

则有状态方程:
x1 , x2 , v1 , v2 为系统四个状态变量 x1 , x2 , x3 , x4 , f1 (t ), f 2 (t ) 为系统两个控制输入 u1 (t ), u2 (t ) ,
如果取
x1 , x2
为系统的两个输出,即:
写成矢量矩阵形式,得系统的状态空间表达式:
【例1- 4】下图是直流电动机的示意图.图中R和L分别 为电枢回路的电阻和电感,J为机械旋转部分的转动惯 量,B为旋转部分的粘性摩擦系数.列写该图在电枢电压 作为控制作用时的状态空间表达式.
§1-1状态变量及状态空间表达式
一.状 态 变 量
足以完全表征系统运动状态的最小个数的一组变 量为状态变量.一个用n阶微分方程描述的系统,就有n 个独立变量,当n个独立变量的时间响应都求得时,系 统的运动状态就被揭示无疑了.因此可以说该系统的
状态变量就是n阶系统的n个独立变量.
同一系统中,究竟选取哪些变量作为独立变量,这 不是唯一的,重要的是这些变量应该是相互独立的,且 其个数应等于微分方程的阶数;又由于微分方程的阶 数唯一的取决于系统中独立储能元件的个数,因此状 态变量的个数就应等于系统独立储能元件的个数.
§1 – 0


在经典控制理论中,对一个线形定常系统,可用 常微分方程或传递函数加以描述,可将某个单变量作 为输出,直接和输入联系起来.实际上系统除了输出 量这个变量之外,还包含有其他独立变量,而微分方
程或传递函数对这些内部的中间变量是不便描述的,
因而不能包含系统的所有信息.
在用状态空间法分析系统时,系统的动态特性是
和经典控制理论类似,可以用方块图表示系统信 号的传递关系. 将状态方程表示的系统动态方程用方块图表示为 如图所示。系统有两个前向通道和一个状态反馈回路 组成,其中D通道表示控制输入U到系统输出Y的直接 转移。
§1-0 概 述 §1-1 状态变量及状态空间表达式
§1-2 状态空间表达式的建立
§1-3 状态变量的线性变换 §1-4 从状态空间表达式求系统传递函数 §1-5 离散时间系统状态空间表达式 §1-6 时变系统和非线性系统的状态空间表达式
众所周知,n阶微分方程式要有唯一的解,必须 知道n个独立的初始条件,很明显,这个独立的初始 条件就是一组状态变量在初始时刻的值. 状态变量是既足以完全确定系统运动状态而个 数又是最小的一组变量,当其在t=to时刻的值已知, 则在给定t≥to时间的输入作用下,便能完全确定系
统在任何t≥to时间的行为.
x3

x3 x2
于是,状态方程为
0 1 x1 x L u 0 2 0 x3 0 0 x1 x 输出方程为 y x3 0 0 1 2 x3 Kb L B J 1
器的输入端就是状态变量的一阶导数 dxi / dt 。 第三步:根据变换过的方块图中各信号的关系,可 以写出每个状态变量的一阶微分方程,从而写出系统 的状态方程。根据需要指定输出变量,即可以从方块
图写出系统的输出方程。
【例1-1】某控制系统的方块图如下图所示,试求出 其动态方程。
解:该系统主要有一个一阶惯性环节和一个积分器组 成。对于一阶惯性环节,我们可以通过等效变换,转 化为一个前向通道为一标准积分器的反馈系统。
相应的传递函数为
mn
所谓实现问题,就是根据以上两式寻求如下状态 空间表达式
x Ax bu y C T x du
并非任意的微分方程或传递函数都能求得其实现, 实现的存在条件是 m n ,当
m n 时, d 0

而当
m n 时 d bm 0 .在这种情况下,传递函
为如下S的有理分式:
由系统的传递函数求其状态方程的过程称为系统
的实现问题,因为传递函数只是表达了系统输出与输 入的关系,却没有表明系统内部的结构,而状态空间 表达式却可以完整的表明系统内部的结构,有了系统
的状态空间表达式,就可以唯一地模拟实现该系统。
考虑一个单变量线性定常系统,它的运动方程是 一个n阶线性常系数微分方程
二.状态矢量
如果n个状态变量用X1(t),X2(t), …,Xn(t)表示,并
把这些状态变量看作是矢量X(t)的分量,则X(t)就称 为状态矢量.
相关主题