当前位置:文档之家› 第2讲 CFD数学模型及物理意义汇编

第2讲 CFD数学模型及物理意义汇编


• 基于局部
– 在一个有限的体积内 – 将体积划分为无限小,趋近于0 – 偏微分(控制)方程
x 0
基本控制方程
• 质量守恒
u v 0 x y
• 动量守恒定律 2u 2u u u 1 P x-mom: u v 2 2
x y
第一类边界条件:Dirichlet 问题 第二类边界条件:Neumann问题
u f ( x, y)
u f ( x, y ) n源自第三类边界条件:Robin问题
u (k hu ) f ( x, y ) n
抛物型偏微分方程
u 2u a 2 t x
第一类边界条件 第二类边界条件
• CFD未来发展的方向是什么?
引言
• 数值计算的出发点:数学模型 • 数学模型(Mathematical model) – 控制方程(Governing equations) • 基于基本原理与定律 • 偏微分方程组 – 定解条件(Boundary conditions) • 坐标系不同,控制方程的形式不尽相同 – 适当选取坐标系可以简化分析 • 必要的简化与化简
第二讲 CFD数学模型及物理意义
屠基元 教授 清华大学 墨尔本皇家理工大学
CFD综述
计算流体力学 非稳态 无粘流 粘性流
稳态
传热 热传导 热对流 热辐射
可压缩流动
层流
湍流
可压缩流动 内流
不可压缩流动 外流
CFD - 问题 ( I )
• CFD问题中的物理流动过程有哪些? • 流动的物理现象是如何在数学方程式中描述的? • 流体流动和热传递的控制方程式是什么? • 为什么边界条件非常重要?如何应用边界条件?
我们需要什么信息?
• 空间变化(x,y,z)&时间(t) :
– 速度(笛卡尔坐标内为u,v,w) – 压力 (P) – 密度 – 温度 (T) – 物质的浓度 (C) – 湍流性质[湍动能 (k), 耗散率 (ε) 或频率 (ω)]
我们如何得到这些信息?
• 基于以下守恒的控制方程
– 质量守恒 – 动量守恒 – 能量守恒
x
x
y
y-mom:
• 能量守恒
2v 2v v v 1 P u v 2 2 x y y x y
2T 2T T T u v K 2 2 x y y x
通用方程
• 由来及意义 • The Equation
Convection term
Source term
( ) ( U ) ( grad ) S t
Unsteady term

通用变量,generalized dependent variable 广义密度,universal density
控制方程的数学特征
• 守恒特性(Conservation & non-conservation) – 守恒型方程 Conservation form • 对流项是以散度的形式给出的 – 非守恒型方程 • 对流项不是以散度的形式给出的 – 对不可压流动, ( ) ( U ) (grad ) S t 具有守恒特性 但是,对于同一方程,采用变换后,就成为非守恒 型方程 ( ) U ( ) (grad ) S t
u g (t )
u g (t ) n
第三类边界条件
• 边界条件的物理意义是什么?
• 如何求解数学方程?
• 为什么需要把流体域分割为许多不重叠的子区域即计算网格?
• 如何应用计算方法?
CFD –问题( II )
• 监控曲线的物理意义是什么? • 计算步骤如何终止? • 求解误差是什么? • 怎么评价计算结果是否正确,是否具有物理意义? • 当处理更加复杂的流动问题时,是否有其它的技术方法、实践 经验或通用准则可以用来克服收敛困难? • 是否有其它CFD的实例?如何更好的分析求解?
U 速度向量(场),velocity vector (field) 广义扩散系数,universal diffusivity S 广义源项,(universal) source term
Diffusion term
基本方程的通用形式
u v w Γ Γ Γ S t x y z x x y y z z u v w 如果 1 质量: x y z 0
控制方程的数学特征
对于理论分析,采用守恒或非守恒变量,守恒方程 或非守恒方程,通常没有本质的差别,但在离散的数值 计算中,守恒型与非守恒型将可能导致很大的差别 ,尤
其是求解含激波等弱解问题时 。故方程的守恒性是计算
流体力学中,必须特别注意的问题。
椭圆型偏微分方程
2 u u 0 2 2 x y 2
u u 1 p u T 动量 Su S' : T 如果 u y z z x
热源 k 如果 T 能量: ST q
通用方程的意义 • 对流-扩散方程(Convection-diffusion~) • 适当选择 、 、U、 、S – =T,= c,U=0, =导热微分方程 – =1,= ,S =0连续性方程 • 为什么需要通用方程? – 各类问题的共同特征 – 深化理论研究(numerical) – 编制通用程序(universal program for all problems)
相关主题