第四章 矩阵范数理论及其应用知识要点:1、向量范数及其性质(范数与赋范空间,n 维向量的1-范数1x 、2-范数2x 、p -范数px 和∞范数x∞,pp lim xx ∞→∞=,aP a xPx =,2H H PxPx x P Px ==,有限维赋范空间的范数是等价的)2、矩阵范数及其相容性(Frobenius 范数,FEn =,相容性:AB A B ≤,1E ≥)3、算子范数(定义,列范数,行范数,谱范数)4、矩阵范数的应用(矩阵序列及幂级数的收敛性,矩阵条件数,摄动理论、矩阵的谱半径)§4.1 向量范数及其性质一、范数与赋范线性空间定义1:如果线性空间V 中的任一向量x ,都对应—个实值函数()f x (记为x ),并满足以下三个条件(称为范数公理):(1)非负性:0x ≠时, x >0;0x =时, x =0。
(2)齐次性:ax =a x ,a K ∈,x V ∈。
(3)三角不等式:x y +≤x +y ,,x y V ∈。
则称x 为V 上向量x 的范数(norm ),V 称为赋范线性空间(normed linear space )。
易证x y -满足距离公理,称之为x 与y 的范数诱导的距离。
若0n x x -→,则称nx 收敛于x ,记为n x x →。
例1:对于连续函数空间[,]C a b 中的向量()f x ,可如下定义范数为:1()()baf t f t dt =⎰,()max ()a t bf t f t ∞≤≤=,1()()bpppa f t f t dt ⎡⎤=⎢⎥⎣⎦⎰,1p ≤<∞。
分别称之为1-范数,∞-范数,p -范数。
注:需要用到数学专业的一些函数不等式,才能证明上述范数的正确性。
性质1:对于赋范线性空间V 上任意的x ,定义实函数()f x x =,则()f x 为V 上的连续函数,即0x x →时,0()()f x f x →,其中0x V ∈。
证明:由000()()f x f x x x x x -=-≤-可知,0x x →时,0()()f x f x →。
因此,()f x 为V 上的连续函数。
性质2:设P 为n 阶可逆矩阵,对于n 维向量n x C ∈,1x 为n C 中的一个范数,令21x Px =,则2x 也为n C 中x 的范数。
证明:(1)非负性:0x ≠时,0Px ≠,210x Px =>;0x =时, 2100x ==。
(2)齐次性:2112()axa Px a Px a x ===,a K ∈,x V ∈。
(3)三角不等式:211122x yPx Py Px Py x y +=+≤+=+,,x y V ∈。
因此,2x 为nC 中x 的范数。
注:内积空间是赋范线性空间,但赋范线性空间不一定构成内积空间。
二、n 维向量的p -范数(1)p ≤≤∞定义2:对于n 维向量12(,,,)T n n x C ξξξ=∈,11ni i x ξ==∑,称为x 的1-范数,记为1x ,由此诱导出的距离称为街区距离。
12221()ni i x ξ==∑,称为x 的2-范数,记为2x ,由此诱导出的距离称为欧氏距离。
1i i nxmax ξ∞≤≤=,称为x 的∞-范数,记为x ∞,由此诱导出的距离称为棋盘距离(也称契比雪夫距离)。
11()npp i pi xξ==∑,称为x 的p -范数,记为p x 。
2H H PxPx x P Px ==,称之为加权范数或椭圆范数,其中P 为可逆矩阵。
定理1:对于n 维向量nx C ∈,pp lim xx ∞→∞=。
注:几何意义上,向量PQ 的2-范数、 ∞-范数和1-范数分别是斜边PQ 长度、直角边PR 长度以及两直角边PR 和RQ 的长度之和。
三、范数的等价性定义3:对任意x V ∈,满足不等式12C xxC x βαβ≤≤的两种范数称为是等价的。
定理2:对于n 维向量nx C ∈,总成立着212xx n x ≤≤,2x x n x ∞∞≤≤,1xx n x ∞∞≤≤,ppxxn x ∞∞≤≤。
定理3:设12,,,n ααα是n 维赋范线性空间E 的一组基,则存在正数,A B ,使得对一切1nk k k x E ξα==∈∑,成立着1221nk k A x B x ξ=⎛⎫≤≤ ⎪⎝⎭∑。
证明:10nk k k x ξα==≠∑时,令21nkk xy ξ==∑,12(,,,)n f y ξξξ=,则12(,,,)n f ξξξ是有界闭集超球面211nk k ξ==∑上连续函数,从而必能取到最小值m 和最大值M ,且显然0m >。
取11,A B M m==,即可证得定理的结论。
结论1:有限维赋范空间的范数是等价的,即对于n 维赋范线性空间E 中的范数a b x x ,,存在正数,A B ,使得对一切x E ∈,成立着ab a A xx B x ≤≤。
推论:范数a b x x ,等价时,0n an lim x →∞=等价于0nbn lim x →∞=。
注:在nC 中,各种p -范数均是等价的,从而对于不同的问题可灵活选用适当的范数。
结论2:n 维赋范线性空间必与n 维向量空间nP 同构并且同胚。
设12,,,n ααα是n 维赋范线性空间E 的一组基,对任何1nk k k x E ξα==∈∑,令()12,,,n Tx ξξξ=,则T 为E 到n P 上的同构映射,并且由A x Tx B x ≤≤可知,T 与1T -均为连续映射,从而E 与n P 是同胚的。
结论3:n 维向量序列{}12(,,,)k kk T n k n x C ξξξ=∈收敛于向量12(,,,)T n n x C ξξξ=∈的充分必要条件为,1,2,,ki i k lim i n ξξ→∞==,即按坐标收敛。
§4.2 矩阵范数及其相容性一、常见的矩阵范数定义1:设n nA C ⨯∈,称11222,1[()]()nHij i j tr A A a ==∑为A 的Frobenius 范数或F -范数,记为FA。
性质1:FA 满足范数公理构成n nC ⨯中范数,并且1FEn =≥。
定理(F -范数的酉不变性):设n nA C ⨯∈中范数,且,n nP Q C⨯∈都是酉矩阵,则FFF PAAQA ==,即给A 左乘或右乘以酉矩阵后其F值不变(在n nA R ⨯∈时P 和Q 都是正交矩阵)。
证明:1122[()][()]H HHFF PAtr A P PA tr A A A ===。
由11222,1()[()]nH Hij FFi j A a tr AA A ====∑及H Q 也为酉矩阵可得,()HH HHFF FF FAQAQ Q A A A ====。
推论:酉(或正交)相似变换下矩阵的F -范数保持不变。
定义2:设n nA C ⨯∈,称1,1nijM i j Aa==∑为1M -范数,1,ij M i j n An max a ∞≤≤=为M ∞-范数。
性质2:1,M M AA∞满足范数公理构成n n C ⨯中范数,并且11M E n =≥,1M En ∞=≥。
二、矩阵范数的相容性定义3:满足条件AB A B ≤的矩阵范数称为具有相容性。
注:工程应用中的矩阵范数常要求满足非负性、齐次性、三角不等式和相容性,因此下文中矩阵范数总假定具有相容性。
性质3:满足相容性的矩阵范数必有1E ≥。
性质4:若A 可逆,则11A A -≥。
例1:Frobenius 范数FA 具有相容性。
例2:1M -范数1M A和M ∞-范数M A ∞具有相容性,但范数1,ij i j nA max a ≤≤=不具有相容性。
三、矩阵范数与向量范数的相容性定义4:若VMV Ax Ax ≤,则称矩阵范数M A 与向量范数V x 具有相容性。
注1:0Vx→时,0V Ax →,即V Ax 是x 的连续函数或Ax 是V 上线性连续算子。
注2:当0x ≠时,()V MVVVAx xA Ax x =≤,从而0V Mx VAx maxAx ≠≤。
例3:22FAxAx ≤。
注:视矩阵为线性变换时,通常要求线性变换是连续即有界的,因此自然有了相容性(包括范数的相容性)要求。
§4.3 矩阵的算子范数一、算子范数的概念定义:0V T x VAx A maxx ≠=。
注:一般算子范数的求解步骤:1、VV AxK x ≤;2、0=1Vx ,0=VAx K 。
二、算子范数的性质性质1:VT V Ax A x ≤。
性质2:TT T ABA B ≤。
性质3:1V T VM x A max Ax A ==≤(假设M A 与V x 具有相容性)。
性质4:1TE=。
三、常见的算子范数1、列范数:11nii x a==∑,111nijj ni A maxa≤≤==∑。
设()n nij A a C⨯=∈,12(,,,)T n n x C ξξξ=∈,令12(,,,)T n Ax y ηηη==,其中1ni i j j j a ηξ==∑,1,2,,i n =。
1111111()n n n n ni ij j ij j i i j i j Ax y a a ηξξ========≤∑∑∑∑∑1111111()()n n nnnij j jijij j nj i j i i a ax max a ξξ≤≤=======≤∑∑∑∑∑。
令11nijj ni M maxa≤≤==∑,则11Ax M x ≤,从而1A M ≤。
不妨设01nij i M a==∑,01j n ≤≤。
取00(0,,0,1,0,,0)j T x =,则011x =,并且0011nij i Ax a M ===∑,因而1A M ≥。
由此可得,111nij j ni A max a ≤≤==∑。
2、行范数:{}1i i nxmax a ∞≤≤=,11nij i nj A max a ∞≤≤==∑。
设()n nij A a C⨯=∈,12(,,,)T n n x C ξξξ=∈,令12(,,,)T n Ax y ηηη==,其中1ni i j j j a ηξ==∑,1,2,,i n =。
1111111()n n ni ij j ij j ij i ni ni ni nj j j Axymax max a max a x max a ηξξ∞∞∞≤≤≤≤≤≤≤≤======≤≤∑∑∑。
令11niji nj M maxa≤≤==∑,则AxM x ∞∞≤,从而AM ∞≤。
不妨设010ni jj M a==>∑,01i n ≤≤。
取000012(,,,)Ti i i n x signa signa signa =,则1x ∞=,并且0000111nnij i j i ji j i nj j Ax max a signa asigna M ∞≤≤===≥=∑∑,因而AM ∞≥。