当前位置:文档之家› 2020年上海普陀区初三数学一模试卷及答案

2020年上海普陀区初三数学一模试卷及答案

普陀区2019学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.已知35x y =,那么下列等式中,不一定正确的是( ▲ ) (A )5=3x y ; (B )+8x y =; (C )+85x y y =; (D )35x x y y +=+. 2.下列二次函数中,如果函数图像的对称轴是y 轴,那么这个函数是( ▲ )(A )22y x x =+; (B )221y x x =++; (C )22y x =+; (D )2(1)y x =-. 3.已知在Rt △ABC 中,90C ∠=︒,1sin 3A =,那么下列说法中正确的是( ▲ ) (A )1cos 3B =; (B )1cot 3A =; (C)tan A =; (D)cot B =.4.下列说法中,正确的是( ▲ )(A )如果,a 是非零向量,那么0ka =; (B )如果e 是单位向量,那么1e =; (C )如果b a =,那么b a =或b a =-;(D )已知非零向量a ,如果向量5b a =-,那么a ∥b .0k =5.如果二次函数()2y x m n =-+的图像如图1所示,那么一次函数y mx n =+的图像经过( ▲ ) (A )第一、二、三象限; (B )第一、三、四象限; (C )第一、二、四象限; (D )第二、三、四象限.6.如图2,在Rt △中,90ACB ∠=︒,CD AB ⊥,垂足为点D ,如果32ADC CDB C C =△△,9AD =,那么BC 的长是( ▲ )(A )4; (B )6; (C )213; (D )310.二、填空题:(本大题共12题,每题4分,满分48分) 7.化简:12()()2a b a b →→→→+--= ▲ . 8.抛物线2(2)y a x =-在对称轴左侧的部分是上升的,那么a 的取值范围是 ▲ . 9.已知函数2()321f x x x =--,如果2x =,那么()f x = ▲ .10.如果抛物线22y ax ax c =++与x 轴的一个交点的坐标是(1,0),那么与x 轴的另一个交点的坐标是 ▲ .11.将二次函数222y x x =-+的图像向下平移m (0)m >个单位后,它的顶点恰好落在x轴上,那么m 的值等于 ▲ .12.已知在Rt △ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC = ▲ . 13.如图3,△ABC 的中线AD 、CE 交于点G ,点F 在边AC 上,GF //BC ,那么GFBC的值是 ▲ .14.如图4,在△ABC 与△AED 中,AB BCAE ED=,要使△ABC 与△AED 相似,还需添加 一个条件,这个条件可以是 ▲ .(只需填一个条件)ABC 图3ABCDEG F图2AD CB图5ABCD 图4ABCEDxyO图115. 如图5,在Rt △中,90C ∠=︒,AD 是三角形的角平分线,如果35AB =,25AC =,那么点D 到直线AB 的距离等于 ▲ .16.如图6,斜坡AB 长为100米,坡角30ABC ∠=︒,现因“改小坡度”工程的需要,将斜坡AB 改造成坡度1:5i =的斜坡BD (、、C 三点在地面的同一条垂线上),那么由点到点下降了 ▲ 米.(结果保留根号)17.如图7,在四边形ABCD 中,90ABC ∠=︒,对角线AC 、BD 交于点O ,AO CO =,CD BD ⊥,如果3CD =,5BC =,那么AB = ▲ .18.如图8,在Rt △ABC 中,90C ∠=︒,5AC =,5sin 13B =,点P 为边BC 上一点,3PC =, 将△ABC 绕点P 旋转得到△A B C '''(点A 、B 、C 分别与点A '、B '、C '对应),使B C ''//AB ,边A C ''与边AB 交于点G ,那么A G '的长等于 ▲ . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:222sin 60cos60tan 604cos45︒-︒︒-︒.20.(本题满分10分)如图9,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE //BC ,EF //AB ,:1:3AD AB =.(1)当5DE =时,求FC 的长;(2)设AD a =,CF b =,那么FE = ▲ ,EA = ▲ (用向量a 、b 表示).ABC A D A D ABCDE F图9图8ABC图7ADC BOAD B图6C如图10,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA AB ⊥,垂足为点A ,DP BC ⊥,垂足为点P ,AP BPPD CD=. (1)求证:APD C ∠=∠;(2)如果3AB =,2DC =,求AP 的长.22.(本题满分10分)函数m y x =与函数xy k=(m 、k 为不等于零的常数)的图像有一个公共点()3,2A k -,其中正比例函数y 的值随x 的值增大而减小,求这两个函数的解析式.23.(本题满分12分)已知:如图11,四边形ABCD 的对角线AC 、BD 相交于点O ,AOD BOC S S =△△. (1)求证:OACOOB DO =; (2)设△OAB 的面积为S ,k ABCD=,求证:2(1)ABCD S k S =+四边形.CDBAO图11图10CDBAP在平面直角坐标系中(如图12),已知抛物线28()3y ax a x c =+++(0)a ≠经过点A ()3,2--,与y 轴交于点B ()0,2-,抛物线的顶点为点C ,对称轴与x 轴交于点D .(1)求抛物线的表达式及点C 的坐标;(2)点E 是x 轴正半轴上的一点,如果AED BCD ∠=∠,求点E 的坐标;(3)在(2)的条件下,点P 是位于y 轴左侧抛物线上的一点,如果△PAE 是以AE 为直角边的直角三角形,求点P 的坐标.xOy 图12O11如图13,在梯形ABCD 中,AD //BC ,90C ∠=︒,2AD =,5BC =,3DC =,点E 在边BC 上,tan 3AEC ∠=.点M 是射线DC 上一个动点(不与点D 、C 重合),联结BM 交射线AE 于点N ,设DM x =,AN y =. (1)求BE 的长;(2)当动点M 在线段DC 上时,试求y 与x 之间的函数解析式,并写出函数的定义域; (3)当动点M 运动时,直线BM 与直线AE 的夹角等于45︒,请直接写出这时线段DM 的长.备用图ABCD ENM图13AB CDE普陀区2019学年度第一学期初三质量调研数学试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(D); 5.(B); 6.(C).二、填空题:(本大题共12题,每题4分,满分48分)三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式212⨯-= ··································································· (4分)31-=······················································································· (3分)3=+. ······················································································ (3分)20.解:(1)∵DE //BC ,EF //AB ,∵DE BF =. ···················································································· (1分) ∵5DE =,∵5BF =. ········································································ (1分) ∵DE //BC ,∵AD DEAB BC =. ··················································································· (1分) ∵13AD AB =,∵513BC =. ······································································ (1分) 7. 2a b →→+; 8. 2a <; 9. 7; 10.30-(,) ; 11.1; 12.6;13. 13; 14.B E ∠=∠(AB ACAE AD=等); 15.2 ; 16.50-; 17.154; 18.2013.解得 15BC =, ················································································· (1分) 10FC =. ························································································ (1分) (2)FE =2a -,EA =12a b -+. ························································ (2分+2分)21.解:(1)∵PA AB ⊥,DP PC ⊥,∵90BAP CPD ∠=∠=︒. ···································································· (1分) 在Rt △ABP 与Rt △PCD 中,AP BPPD CD=, ∵Rt △ABP ∵Rt △PCD . ···································································· (1分) ∵APB PDC ∠=∠. ············································································ (1分) ∵DPB APB APD ∠=∠+∠,DPB PDC C ∠=∠+∠,得APD C ∠=∠. ··············································································· (2分) (2)∵Rt △ABP ∵Rt △PCD . ∵B C ∠=∠.∵AB AC =. ···················································································· (1分) ∵3AB =,2DC =,∵1AD =. ··························································· (1分) ∵APD C ∠=∠,PAD CAP ∠=∠,∵△APD ∵△ACP . ·········································································· (1分) ∵AD APAP AC=. ················································································· (1分)得AP = ···················································································· (1分)22.解:由点A ()3,2k -在函数xy k=的图像上,可得 32k k-=. ················································································ (1分) 整理,得2230k k --=. ··································································· (1分) 解得 13k =,21k =-. ····································································· (2分) ∵正比例函数y 的值随x 的值增大而减小,∵1k =-. ························································································ (2分)得 y x =-,点A ()3,3-. ································································· (2分) 由点A ()3,3-在函数my x=的图像上,可得 9m =-. ··················································································· (1分) ∵9y x=-. ······················································································ (1分) 两个函数的解析式分别为y x =-,9y x=-.23.证明:(1)过点A 作AH ⊥BD ,垂足为点H . ···················································· (1分)∵S △AOD =AH DO ⋅⋅21, S △AOB =AH OB ⋅⋅21, ∴OB DO AH OB AHDO S S AOBAOD=⋅⋅⋅⋅=∆∆2121. ····························································· (2分)同理,BOC AOB S COS OA∆∆=. ·········································································· (1分) ∵AOD BOC S S =△△, ∵DO COOB OA=. ················································································ (1分) (2)∵OACOOB DO =,AOB COD ∠=∠, ∵△OCD ∵△OAB . ······································································· (1分) ∵CD DO COk AB BO AO===. ··································································· (1分) 22k AB CD S S OAB OCD =⎪⎭⎫ ⎝⎛=∆∆. ·································································· (1分) ∵△OAB 的面积为S ,∴S k S OCD ⋅=∆2. ············································· (1分) 又∵k OBDOS S OAB AOD ==∆∆,∵S k S AOD ⋅=∆. ············································· (1分) 同理,S k S BOC ⋅=∆. ······································································ (1分)∴AOB BOC COD DOA ABCD S S S S S =+++△△△△四边形S k S k S k S ⋅+⋅+⋅+=2 S k k ⋅++=)12(2S k 2)1(+=.································································· (1分)24.解:(1)由抛物线28()3y ax a x c =+++经过点A ()3,2--和点B ()0,2-,得2,893() 2.3c a a c =-⎧⎪⎨-++=-⎪⎩ 解得4,32.a c ⎧=⎪⎨⎪=-⎩ ··············································· (2分) ∵抛物线的表达式是24423y x x =+-. ·············································· (1分) 点C 的坐标是3(,5)2--. ··································································· (1分) (2)联结AB 交CD 于点F ,过点A 作AH OD ⊥,H 为垂足.∵A ()3,2--,B ()0,2-,∵3AB =. 由对称性可得 32BF =. ····································································· (1分) ∵5CD =,∵3CF =.在Rt △BCF 中,1tan 2BF BCF CF ∠==. ················································· (1分) 在Rt △AEH 中,tan AHAEH EH∠=,∵AED BCD ∠=∠, ∵12AH EH =.∵4EH =. ····································································· (1分) ∵3OH =,∵1OE =.∵点E 的坐标是()1,0. ······································································· (1分) (3)∵△PAE 是以AE 为直角边的直角三角形, ∵90PAE ∠=︒或90PEA ∠=︒.设点P 点的坐标为24(,42)3m m m +-. ①当90PAE ∠=︒时,点P 只能在AE 的下方. 过点P 作PG AH ⊥,G 为垂足.∵3PG m =+,2443AG m m =--. ∵GAE AHE AEH ∠=∠+∠,GAE PAE PAG ∠=∠+∠,∵PAG AEH ∠=∠.∵tan tan PAG AEH ∠=∠. ∵PG AH AG EH =.∵2314243m m m +=--. ···················································· (1分) 解得3m =-,32m =-. ∵3m =-不合题意舍去,∵32m =-. ∵点P 的坐标是3(,5)2--. ································································ (1分) ②当90PEA ∠=︒时.同理可得点P的坐标是913(42-+. ··································· (2分)25.解:(1)过点A 作AH BC ⊥,H 为垂足.∵AH BC ⊥,∴90AHE ∠=︒.∵90C ∠=︒,∴AHE C ∠=∠.∴AH //DC .∵AD //BC ,3DC =∴3AH DC ==. ······························································· (1分) 同理可得2HC AD ==. ··························································································· (1分) 在Rt △AEH 中,90AHE ∠=︒,tan 3AEH ∠=,∴3AH HE=. ∴1EH =. ················································································································ (1分) ∵5BC =,∴2BE =. ····························································································· (1分)(2)延长BM 、AD 交于点G . ············································································· (1分) ∵DG //BC ,∴DG DM BC MC=. 由DM x =,3DC =,5BC =, 得53DG x x =-,解得53x DG x=-. ·········································································· (1分) ∴633x AG x+=-. ········································································································· (1分) ∵AG //BC ,∴AN AG BN BE =. 在Rt △AEH 中,90AHE ∠=︒,1EH =,3AH =,。

相关主题