当前位置:文档之家› 天线与电波传播_完整版

天线与电波传播_完整版


其中:R x x2 y y2 z z2
x 2 y 2 z 2 r d l dz
I 0 e jkr l 2 I 0l e jkr ˆ ˆ Ax, y, z z dz z 4 r l 2 4 r
Ar sin cos sin sin A cos cos cos sin cos sin A cos Ax sin Ay 0 Az
§1.2 电基本振子
§1.2 电基本振子
近区场的性质:由于电场和磁场相差90度,故坡印 廷矢量的平均值等于零,这说明无电磁场能量辐射, 称为感应场。 远区场:当 kr 1 时称为远场区,电磁场主要由 kr 的低次幂项决定,故可略去 kr 的高次幂项,得
Er E H r H 0 jkr kI 0l e E j sin 4 r kI 0l e jkr H j sin 4 r
天线发展简史
一、1886, 赫兹(Heinrich Rudolf Hertz, 1857-1894)
1839年法拉第(Michael Faraday, 1791-1867)发现、 1873年麦克斯韦(James Clerk Maxwell, 1831-1879)完成的电磁 理论,在1886年由海因里希· 鲁道夫· 赫兹建立了第一个无 线电系统,首次在实验室证实。
9
天线发展简史
数值方法,如矩量法(Method of Moment, MoM)、有限差分法(Finite-Difference Method, FDM)、有限元法(Finite-Element Method, FEM)、 几何绕射理论(Geometrical Theory of Diffraction, GTD)和物理绕射理论(Physical Theory of Diffraction, PTD)等的引入大大推进了天线技术的发 展,促进了天线分析和设计技术的逐渐成熟。现在 天线的设计不再是修修补补(cut and try)的方法, 已经跨入了一个整体系统级的设计阶段。 天线正朝小型化、宽频带、多频段和高频率等 方向发展。
磁场:
kI0l sin 1 1 jkr H j 1 e 4 r jkr
§1.2 电基本振子
对于电场:
1 1 E jA j A H j
电场:
I 0l cos 1 1 jkr Er 1 e 2 2 r jkr kI 0l sin 1 1 1 jkr E j 1 e 2 4 r jkr kr E 0
kr 1
近区场辐射功率密度:
1 1 ˆE H ˆE H Wav Re E H Re r r 2 2




2 2 1 I 0l sin ˆ I 0l sin cos ˆj Wav Re r j 0 5 2 5 2 k 4 r k 8 r
I 0l e jkr Ar Az cos cos 4 r I 0l e jkr A Az sin sin 4 r
A 0
1 1 Ar ˆ rA 对于磁场: H r r
H r H 0
E jH j A
E jA 0 0
2 J jE A A
§1.1 辅助函数法
2 J jE A A E jA
2 A k A J A j J A j
2
洛伦兹条件:பைடு நூலகம்
A j
1 j
A
2 A k A J
2
1 E jA jA j A

1 H A
A
因此,知道
A

1 E jA jA j A

§1.1 辅助函数法
A 4 e jkR J x, y , z dv -体电流 R v e jkR J s x, y , z ds -面电流 R s e jkR I e x, y, z dl R c
7
天线发展简史
三、1980, 超大阵列(VLA)抛物面天线(Very Large Array Steerable Parabolic Dish Antennas) 位于美国新墨西哥州(Socorro, New Mexico)的超大阵 列天线由27面直径为25米的抛物面按Y型方式排列组成,是 世界第一个射电天文望远镜。其分辨率相当于36千米跨度的 天线,而灵敏度相当于直径为130米的碟型天线。
波阻抗:
kr 1
Zw E H
固有阻抗:
120 377
§1.2 电基本振子
远区场的性质: (1)电场与磁场在空间相互垂直,它们均与r 成反 比。因等相位面为球面,故为球面电磁波。 (2)因在传播方向上电磁场的分量为零,故为横电 磁波,记为TEM波。
(),称为波阻抗; (3)电场与磁场的比值等于 120 (4)由于电场和磁场相位相同,且均与 成正 sin 比,故电基本振子在远区为辐射场,且具有方向性。
12
天线与电波传播
第一章 电磁场方程及其解
§1.1 辅助函数法
Maxwell方程
B 法拉第定律 E t D 安培定律 H J t D 电高斯定律 B 0磁高斯定律
Maxwell方程
A 0
Hertz ,KIT的教授 无线电之父
赫兹实验的无线电系统
天线发展简史
二、1901, 马可尼(Guglielmo Marconi, 1874-1937,1909 年 诺贝尔物理学奖) 1901年马可尼成功实现横穿大西洋(英国—加拿大) 的无线电通信。位于英国(Poldhu, England)的发射天线 由50根斜拉导线组成,用悬于60米高的木塔间的钢索支撑。 位于加拿大(Newfoundland, Canada)的接收天线是200米 长的导线,由风筝牵引。 马可尼,意大 利人,当时年 仅20岁。
§1.2 电基本振子
电基本振子的场辐射
§1.3 磁基本振子
麦克斯韦电磁理论获得了巨大的成功。电和磁的 对称性问题,至今尚未解决。 电的基本单元是电荷。正负电荷可以分开,自由 电荷能单独存在,因而我们可以引进电荷密度和电 流密度的概念。 磁的基本单元是磁偶极矩,它可以看作是正负磁 荷的组合。然而,正负磁荷却不能分开,自由磁荷 不能单独存在。所以,在电磁理论中我们不能引入 磁荷密度和磁流密度等概念。



§1.1 辅助函数法
在远场区
E jA E jA E jA Er 0
1 j ˆE ˆ A H r r


天线辐射问题分析过程
§1.2 电基本振子
什么是电基本振子? 一段通有高频电流的直导线,当导线长度远远小于
2 A k A J
2
A 4 A 4
-线电流
远场辐射,忽略高阶项
1 n 2,3,4, rn
jkr e ˆA , ˆA , ˆAr , A r , r


r
1 ˆA , ˆA , 1 E je jkr 2 r r
10
电磁频谱与无线电频段
天线概念
天线是无线系统的重要部件,它是现代信息社会的电子眼、 电子耳。 定义 — 用来辐射或接收无线电波的装置,导行波与自由空 间波互相转换区域的结构,转换器件或换能器 — 能量转换。 电路的观点 — 从传输线看向天线这一段等效于一个电阻 Rr , 是从空间耦合到天线终端的电阻,与天线结构自身的任何电阻 无关。
§1.3 磁基本振子
1931年,英国的著名物理学家狄拉克(1933年诺 贝尔物理学奖获得者)首先从理论上讨论了磁单极 子存在的问题。1975年,加利福尼亚和休斯顿大学的 一个小组宣称,他们从高空气球的实验中发现了磁 单极子,曾哄动了当时的物理学界。但后来发现, 如果正确考虑实验中的系统误差,从他们的实验结 果中并不能得出这个结论。1982年3月,美国斯坦福 大学的卡布莱拉又宣称,他利用一个在9K温度下的 铌超导线圈捕捉到一个磁单极子。不过至今许多类 似的实验始终未能发现同样的事例。
天线发展简史
五、2000, 移动/手持天线(Mobile/Hand - held Antenna) 工作于800MHz的手持蜂窝电话天线随处可见。 从马可尼时代直到20世纪40年代,天线主要是以 导线为辐射单元,工作频率也提高到UHF。 进入二战期间,随着1GHz以上微波源(如调速 管、磁控管)的发明,天线开始了一个新的纪元。 波导口径天线、喇叭天线和反射面天线等如雨后春 笋般出现。
近区场:当 kr 1 时称为近区,电磁场主要由 kr 的 高次幂项决定,故可略去 kr 的低次幂项,得
§1.2 电基本振子
I 0l e jkr Er j cos 3 2k r jkr Il e E j 0 sin 4k r 3 jkr I 0l e H sin 2 4 r
波长时,该导线被称为电基本振子。 当: l / 1 , 可近似地认为导线上每一点的电
流都是等幅同相的。
电基本振子天线结构
电场方向
§1.2 电基本振子
ˆI 0 I e z z
I0
-常数
jkR e 磁矢位: A I e x, y, z dl 4 c R
相关主题