当前位置:文档之家› 直线电机位置控制算法及仿真

直线电机位置控制算法及仿真

直线电机位置控制算法及仿真1 绪论1.1 研究背景及意义随着工业机械自动化程度的不断升级,有力的带动了上游直线电机在中国的快速成长,国外品牌纷纷加大对中国市场的投入力度,永磁同步直线电机是一种将电能直接转化是动能的转化装置,省去了中间的转换机构,消除了机械转动链的影响,具有速度快,推力大,精度高等诸多优点,因此,广泛应用于精密和高速运行等领域。

但是永磁同步直线电机是一个典型的非线性多变量系统,许多非线性因素的存在都会影响到永磁同步直线电机系统的控制性能,如没有知的负载和摩擦等。

传统的PID控制方法已经不能满足于永磁机电动机的高精度场合,因此如何设计高性能的直线电机位置控制算法一直以来都是控制领域的热点问题之一。

因此,在传统PID控制方式下,针对多变量、非线性、强耦合的永磁同步直线电机系统设计了一种滑模位置控制器,弥补了常规PID控制跟踪精度不高的缺点。

滑模控制具有控制精度高、抗干扰能力强、适用范围广的等优点,因此滑模控制方法已经成是永磁同步直线电机领域重点关注问题,相关研究人员对此进行了深入研究。

1.2 国内外研究现状直线电机的研究现状1840年Wheatsone开始提出与制作了略具雏形的直线电机。

从那时至今,在160多年的历史记载中,直线电机经历了三个时期。

1840-1955年是探索实验时期:从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。

自从Wheatsone提出和试制了直线电机以后,最早明确的提到直线电机文章的是1890年美国匹兹堡市的市长,在他写的一篇文章中,首先明确的提到了直线电机以及它的专利。

然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却没有能获得成功。

至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。

这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。

1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作是导弹发射装置,但其发展并没有超出模型阶段。

至此,从1930-1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。

从1940-1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。

1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW的直线电动机是动力,成功的用4.1s的时间将一架重4535kg的喷气式飞机在165m的行程内由静止加速的188km/h的速度,它的试验成功,使直线电动机可靠性好等的优点受到了应有的重视,随后,美国利用直线电机制成的、用作抽汲钾、钠等液态金属的电磁泵,是的是核动力中的需要。

1954年,英国皇家飞机制造公司利用双边扁平型直流直线电机制成了发射导弹的装置,其速度可达1600km/h。

在这个阶段中,尤需值得一提的是,直线电机作是高速列车的驱动装置得到了各国的高度重视并计划予以实施。

在1840-1955年期间,是直线电机探索实验和部分实验应用时期,在直线电机与旋转电机的相互竞争中,由于直线电机的成本和效率方面没有能够战胜旋转电机,或者说,直线电机还没能找到它的专属领域,以及直线电机在设计方面也没有突破性的成功,所以直线电机在这一时期始终没有能得到有效的推广。

1956-1970年是开发应用时期:自1955年以来,直线电机进入了全面的开发阶段,特别是该时期的控制技术和材料的惊人发展,更加助长了这种势头。

在这段时期,申请直线机的专利件数也开始急速增加,该时期直线电机专利的增长率超过了所有其他技术领域的平均增长率。

到1965年以后,随着控制技术和材料性能的显著提高,应用直线电机的实用设备被逐步开发出来,例如采用直线电机的MHD泵、自动绘图仪、磁头定位驱动装置、电唱机、缝纫机、空气压缩机、输送装置等。

1971年至今是实用商品时期从1971年开始到目前的这个阶段,直线电机终于进入了独立的应用时代,在这个时代,各类直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、各种电动门、电动窗、电动纺织机等等。

特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超500km/h,接近了航空的飞行速度,且试验行程共计数十万千米。

在这个时期,直线电机领域的研究人员通过对直线电机在历史发展中多次起落的分析,终于选择了一条适合直线电机自身发展的独特思路,它不再与旋转电机直接对抗,不以单机的形式与旋转电机竞争,而以直线电机系统与旋转电机系统相比,从而找到适合于自己的系统与旋转电机展开竞争,在旋转电机无能是力的的方寻找自己的位置。

例如,直线电机应用于磁悬浮列车,液态金属的输送和搅拌,电子缝纫机和磁头定位装置,直线电机冲压机等等。

直线电机走自己的道路,在满足人类需求的过程中求得自身的发展。

在世界上一些发达国家,许多人和不少著名电气企业均在研究和开发直线电机产品,例如美国的西屋公司、德国的西门子公司、英国、法国、瑞典,特别是日本,其人员之多和范围之广是世界首屈的。

我国直线电机的研究和应用发展是从20世纪70年代初开始的。

主要成果有工厂行车、电磁锤、冲压机、摩擦压力机、磁分选机、玻璃搅拌、拉伸机、送料机、粒子加速器、邮政分拣机、矿山运输系统、计算机磁盘定位系统、自动绘图仪、直线电机驱动遥控窗帘机、直线电机驱动门、炒茶机等,我国直线电机研究虽然也取得了一些成绩,但也国外相比,其推广应用方面尚存在很大差距。

国内外PI控制算法的发展国际全球工业电子温度控制器市场近些年来增长缓慢,因为温度控制器环节已经被纳入为分布式控制系统,个人电脑(PC)和可编程逻辑控制器。

VDC发现工业电子温度控制器全球市场的增长率在2003年为3.6%,2004年为3.5%,2005年为2.5%。

我们预计2006全球工业电子温度控制器市场的增长率仅为1.25,而预测2010年的综合年度增长率仅为0.7%。

欧洲和北美工业电子温度控制器市场受到这一趋势的影响最大。

这两个较大地区的市场预计将在2010年出现负增长。

然而,亚太市场,较小的拉丁美洲和其他地区的市场预计仍将保持增长。

中国作为一个主要的制造中心和市场的崛起是工业电子温度控制器增长的驱动因素。

工业电子温度控制器OEM厂商以及众多的终端工业厂商已经开始转移到中国大陆,以获得低成本的劳动力和原料优势。

日本经济的复苏同样推动该地区走出了停滞发展时期。

OEM厂家和主要终端工业公司将制造业务向中国的转移,以及温度控制器价格的下降,是欧洲和北美市场预测下降的主要原因。

这两个地区的市场都已非常成熟,因此弥补现有OEM和其他生产商的新行业或新公司的发展空间不大。

此外,许多位于欧洲和北美的工业电子温度控制器供应商已经表明一旦准备充分,他们将很快在中国展开他们的工业电子温度控制器制造业务。

通过在中国生产,供应商不但可以获得更便宜的劳动力和原料的竞争优势,而且他们这样更接近主要的发展市场。

较小的拉丁美洲市场预计在2010年电子温度控制器的增长率最高(CAGR为4.8%),因为该地区很多经济领域的发展继续实行自动化操作。

受到资本投资流入更慢的影响,其他地区的出货额预计增长缓慢,综合年度增长率仅为0.9%。

一些研究文章陈述了当前工业控制的状况,如日本电子测量仪表制造协会在1989年对过程控制系统做的调查报告。

该报告表明90%以上的控制回路是PID 结构。

另外一篇有关加拿大造纸厂的统计报告表明典型的造纸厂一般有2000多个控制回路,其中97%以上是PI控制,而且仅仅有20%的控制回路工作比较满意。

控制回路性能普遍差的原因中参数整定不合适占30%,阀门问题占30%。

而另外的20%的控制器性能差有多种原因,如传感器的问题、采样频率的选择不当以及滤波器的问题等。

Ender也给出了相似的统计结果:在已安装的过程控制器中30%是处在手动状态;20%的回路是采用厂家的整定参数,即控制器制造商预先设定的参数值;30%的控制回路由于阀门和传感器的问题导致控制性能较差。

滑模控制算法的发展20世纪50年代前苏联学者提出变结构控制,变结构控制起源于继电器控制和Bang-Bang控制,它与常规控制的区别在于控制的不连续性。

滑模控制是变结构控制的一个分支。

它是一种非线性控制,通过切换函数来实现,根据系统状态偏离滑模的程度来切换控制器的结构,从而使系统按照滑模规定的规律运行的控制方法。

滑模控制已形成一套比较完整的理论体系,并已广泛应用到各种工业控制对象之中。

滑模控制得到广泛应用的主要原因是,对非线性系统的良好控制性能,对多输入多输出系统的可应用性,对离散时间系统的建立良好的设计标准。

滑模控制的重要的优点是鲁棒性,当系统处于滑动模型,对被控对象的模型误差、对象参数的变化以及外部干扰有极佳的不敏感性。

1.3 直线电机原理及其结构直线电机可以认为是旋转电机在结构方面的一种演变,它可看作是将一台旋转电机沿径向剖开,然后将电机的圆周展成直线,如图所示。

这样就得到了由旋转电机演变而来的最原始的直线电机。

由定子演变而来的一侧称为初级或原边,由转子演变而来的一侧称为次级或副边。

图中演变而来的直线电机,其初级和次级长度是相等的,由于在运行时初级与次级之间要作相对运动,如果在运动开始时,初级与次级正巧对齐,那么在运动中,初级与次级之间互相耦合的部分越来越少,而不能正常运动。

为了保证在所需的行程范围内,初级与次级之间的耦合能保持不变,因此实际应用时,是将初级与次级制造成不同的长度。

在直线电机制造时,既可以是初级短、次级长,也可以是初级长、次级短,前者称作短初级长次级,后者称为长初级短次级。

但是由于短初级在制造成本上,运行的费用上均比短次级低得多,因此,目前除特殊场合外,一般均采用短初级,见图所示。

上述介绍的直线电机称为扁平型直线电机,是目前应用最广泛的,除了上述扁平型直线电机的结构形式外,直线电机还可以做成圆筒型(也称管型)结构,它也可以看作是由旋转电机演变过来的。

旋转电机通过钢绳、齿条、皮带等转换机构转换成直线运动,这些转换机构在运行中,其噪音是不可避免的,而直线电机是靠电磁推力驱动装置运行的,故整个装置或系统噪声很小或无噪声,运行环境好。

图.a中表示一台旋转式电机以及定子绕组所构成的磁场极性分布情况,图.b表示转变为扁平型直线电机后,初级绕组所构成的磁场极性分布情况,然后将扁平型直线电机沿着和直线运动相垂直的方向卷接成筒形,这样就构成图.c 所示的圆筒型直线电机。

相关主题