大学物理课题演示实验报告5篇大学物理课题演示实验报告 (1)一、实验任务精确测定银川地区的重力加速度二、实验要求测量结果的相对不确定度不超过5%三、物理模型的建立及比较初步确定有以下六种模型方案:方法一、用打点计时器测量所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.方法二、用滴水法测重力加速度调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面重力加速度的计算公式推导如下:取液面上任一液元a,它距转轴为_,质量为m,受重力mg、弹力n.由动力学知:ncosα-mg=0(1)nsinα=mω2_(2)两式相比得tgα=ω2_/g,又tgα=dy/d_,∴dy=ω2_d_/g,∴y/_=ω2_/2g.∴g=ω2_2/2y..将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标_、y测出,将转台转速ω代入即可求得g.方法四、光电控制计时法调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.方法五、用圆锥摆测量所用仪器为:米尺、秒表、单摆.使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r 由以上几式得:g=4π2n2h/t2.将所测的n、t、h代入即可求得g值.方法六、单摆法测量重力加速度在摆角很小时,摆动周期为:则通过对以上六种方法的比较,本想尝试利用光电控制计时法来测量,但因为实验室器材不全,故该方法无法进行;对其他几种方法反复比较,用单摆法测量重力加速度原理、方法都比较简单且最熟悉,仪器在实验室也很齐全,故利用该方法来测最为顺利,从而可以得到更为精确的值。
四、采用模型六利用单摆法测量重力加速度摘要:重力加速度是物理学中一个重要参量。
地球上各个地区重力加速度的.数值,随该地区的地理纬度和相对海平面的高度而稍有差异。
一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。
研究重力加速度的分布情况,在地球物理学中具有重要意义。
利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。
伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。
这就是单摆的等时性原理。
应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长l,只需要量出摆长,并测定摆动的周期,就可以算出g值。
实验器材:单摆装置(自由落体测定仪),钢卷尺,游标卡尺、电脑通用计数器、光电门、单摆线实验原理:单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。
在摆长远大于球的直径,摆锥质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆锥即在平衡位置左右作周期性的往返摆动,如图2-1所示。
图2-1单摆原理图摆锥所受的力f是重力和绳子张力的合力,f指向平衡位置。
当摆角很小时(θ<5°),圆弧可近似地看成直线,f也可近似地看作沿着这一直线。
设摆长为l,小球位移为_,质量为m,则sinθ=f=psinθ=-mg=-m_(2-1)由f=ma,可知a=-_式中负号表示f与位移_方向相反。
单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a==-ω2_ 可得ω=于是得单摆运动周期为:t=2π/ω=2π(2-2)t2=l(2-3)或g=4π2(2-4)利用单摆实验测重力加速度时,一般采用某一个固定摆长l,在多次精密地测量出单摆的周期t后,代入(2-4)式,即可求得当地的重力加速度g。
由式(2-3)可知,t2和l之间具有线性关系,为其斜率,如对于各种不同的摆长测出各自对应的周期,则可利用t2—l图线的斜率求出重力加速度g。
试验条件及误差分析:上述单摆测量g的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差:1.单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。
在本实验的测量精度范围内,验证出单摆的t与θ无关。
实际上,单摆的周期t随摆角θ增加而增加。
根据振动理论,周期不仅与摆长l有关,而且与摆动的角振幅有关,其公式为:t=t0[1+2sin2+2sin2+……]式中t0为θ接近于0o时的周期,即t0=2π2.悬线质量m0应远小于摆锥的质量m,摆锥的半径r应远小于摆长l,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:3.如果考虑空气的浮力,则周期应为:式中t0是同一单摆在真空中的摆动周期,空气是空气的密度,摆锥是摆锥的密度,由上式可知单摆周期并非与摆锥材料无关,当摆锥密度很小时影响较大。
4.忽略了空气的粘滞阻力及其他因素引起的摩擦力。
实际上单摆摆动时,由于存在这些摩擦阻力,使单摆不是作简谐振动而是作阻尼振动,使周期增大。
大学物理课题演示实验报告 (2)一、演示目的气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。
二、原理首先让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
这是由于电荷在导体上的分布与导体的曲率半径有关。
导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。
反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。
当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。
而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。
三、装置一个尖端电极和一个球型电极及平板电极。
四、现象演示让尖端电极和球型电极与平板电极的距离相等。
尖端电极放电,而球型电极未放电。
接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生。
五、讨论与思考雷电暴风雨时,最好不要在空旷平坦的田野上行走。
为什么?大学物理课题演示实验报告 (3)1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
因而热敏电阻的电阻值可以根据电阻定律写为(1—2)式中为两电极间距离,为热敏电阻的'横截面,。
对某一特定电阻而言,与b均为常数,用实验方法可以测定。
为了便于数据处理,将上式两边取对数,则有(1—3)上式表明与呈线性关系,在实验中只要测得各个温度以及对应的电阻的值,以为横坐标,为纵坐标作图,则得到的图线应为直线,可用图解法、计算法或最小二乘法求出参数 a、b的值。
热敏电阻的电阻温度系数下式给出(1—4)从上述方法求得的b值和室温代入式(1—4),就可以算出室温时的电阻温度系数。
热敏电阻在不同温度时的电阻值,可由非平衡直流电桥测得。
非平衡直流电桥原理图如右图所示,B、D之间为一负载电阻,只要测出,就可以得到值。
·物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板当负载电阻→,即电桥输出处于开路状态时, =0,仅有电压输出,用表示,当时,电桥输出=0,即电桥处于平衡状态。
为了测量的准确性,在测量之前,电桥必须预调平衡,这样可使输出电压只与某一臂的电阻变化有关。
若R1、R2、R3固定,R4为待测电阻,R4 = R_,则当R4→R4+△R时,因电桥不平衡而产生的电压输出为:(1—5)在测量MF51型热敏电阻时,非平衡直流电桥所采用的是立式电桥,,且,则(1—6)式中R和均为预调平衡后的电阻值,测得电压输出后,通过式(1—6)运算可得△R,从而求的 =R4+△R。
3、热敏电阻的电阻温度特性研究根据表一中MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性研究桥式电路,并设计各臂电阻R和的值,以确保电压输出不会溢出(本实验=1000.0Ω,=4323.0Ω)。
根据桥式,预调平衡,将“功能转换”开关旋至“电压“位置,按下G、B 开关,打开实验加热装置升温,每隔2℃测1个值,并将测量数据列表(表二)。
表一 MF51型半导体热敏电阻(2.7kΩ)之电阻~温度特性温度℃ 25 30 35 40 45 50 55 60 65电阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748表二非平衡电桥电压输出形式(立式)测量MF51型热敏电阻的数据i 1 2 3 4 5 6 7 8 9 10温度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4热力学T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.40.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.40.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.94323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1 根据表二所得的数据作出~图,如右图所示。