1. 波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.94121/A A V A A ∴===≈++5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:64()(2001800)70010sin 3510222001r L r y λθθ--++⨯⨯====⨯∆⨯⨯弧度12'≈6. 在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
劳埃德镜长40cm ,置于光源和屏之间的中央.(1)若光波波长λ=500nm ,问条纹间距是多少?(2)确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示::产生干涉的区域P 1P 2可由图中的几何关系求得.)解:(1)干涉条纹间距601500500100.1875mm 4r y d λ-∆==⨯⨯=(2)产生干涉区域12P P 由图中几何关系得:设2p 点为2y 位置、1P 点位置为1y则干涉区域21y y y =-()()()202001112tan 1222d y r r r r r r α''=+=+⨯'-()()002(1500400)38003.455mm215004001100r r d r r '++===='--2mmP 2P 1P 001010001()112()tan ()1222()()22(1500400) 1.16mm 1500400d r r d y r r r r r r r r α'-''=-=-='+'+-==+21 3.46 1.16 2.30mm y y y =-=-=(3)劳埃镜干涉存在半波损失现象 N ∴暗yy =∆N 亮=N 暗1- 2.311121110.1875y y =-=-=-=∆条亮纹7. 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度.已知肥皂膜折射率为1.33,且平行光与发向成30°角入射.解:根据题意222(210)2710nm30d n j d λ-=+∴===8. 透镜表面通常镀一层如MgF 2(n=1.38)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚?解:可以认为光是沿垂直方向入射的。
即︒==021i i由于上下表面的反射都由光密介质反射到光疏介质,所以无额外光程差。
因此光程差nh i nh 2cos 22==δ如果光程差等于半波长的奇数倍即公式 2)12(λ+=∆j r ,则满足反射相消的条件因此有2)12(2λ+=j nh所以),1,20(4)12( =+=j n j h λ当0=j 时厚度最小cm10nm 64.9938.1455045-min ≈=⨯==nh λ9. 在两块玻璃片之间一边放一条厚纸,另一边相互压紧.玻璃片l 长10cm,纸厚为0.05mm,从60°的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少?设单色光源波长为500nm.解:由课本49页公式(1-35)可知斜面上每一条纹的宽度所对应的空气尖劈的厚度的变化量为1221221sin 2i n n h h h j j -=-=∆+λλλ=⎪⎪⎭⎫⎝⎛-=22312如果认为玻璃片的厚度可以忽略不记的情况下,则上式中︒===60,1122i n n 。
而厚度h 所对应的斜面上包含的条纹数为10010500005.07=⨯==∆=-λh h h N故玻璃片上单位长度的条纹数为1010100==='l N N 条/厘米10. 在上题装置中,沿垂直于玻璃片表面的方向看去,看到相邻两条暗纹间距为1.4mm 。
—已知玻璃片长17.9cm,纸厚0.036mm,求光波的波长。
解:依题意,相对于空气劈的入射角220,cos 1.sin i i θ==L d==θtan 0.12=n d L i n L 22cos 222λθλθλ===∆∴563.13nm mm 10631284916.51794.1036.0224=⨯=⨯⨯=∆=∴-L L d λ11. 波长为400760nm 的可见光正射在一块厚度为1.2×10-6m,折射率为1.5玻璃片上,试问从玻璃片反射的光中哪些波长的光最强.解:依题意,反射光最强即为增反膜的相长干涉,则有:2)12(22λδ+==j d n故1242+=j dn λ当0=j 时,nm 7200102.15.14432=⨯⨯⨯==-d n λ当1=j 时,nm24003102.15.143=⨯⨯⨯=-λ 当2=j 时,nm14405102.15.143=⨯⨯⨯=-λ 当3=j 时,nm10707102.15.143=⨯⨯⨯=-λ当4=j 时,nm8009102.15.143=⨯⨯⨯=-λ 当5=j 时,nm5.65411102.15.143=⨯⨯⨯=-λ 当6=j 时,nm8.55313102.15.143=⨯⨯⨯=-λ 当7=j 时,nm48015102.15.143=⨯⨯⨯=-λ 当8=j 时,nm5.42317102.15.143=⨯⨯⨯=-λ 当9=j 时,nm37819102.15.143=⨯⨯⨯=-λ所以,在nm 760~390的可见光中,从玻璃片上反射最强的光波波长为nm.5.654,nm 8.553,nm 480,nm 5.42312. 迈克耳孙干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长。
解:根据课本59页公式可知,迈克耳孙干涉仪移动每一条条纹相当h 的变化为:()22212cos 2cos 2cos 21i i j i j h h h λλλ=-+=-=∆现因 02=i , 故2λ=∆h909=N 所对应的h 为2λN h N h =∆=故550nm mm 105.590925.0224=⨯=⨯==-N h λ13. 迈克耳孙干涉仪平面镜的面积为4×4cm 2,观察到该镜上有20个条纹。
当入射光的波长为589nm 时,两镜面之间的夹角为多大?解: 因为 2cm 44⨯=S所以 40mm cm 4==L所以mm 22040===∆N L L又因为θλ2=∆L所以()73.301025.1471022589266''=⨯=⨯⨯=∆=-rad Lλθ14. 调节一台迈克耳孙干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹。
若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径。
(提示:圆环是等倾干涉图样。
计算第一暗环角半径是可利用θ≈sin θ及cos θ≈1-θ2/2的关系。
)解:(1)因为光程差δ每改变一个波长λ的距离,就有一亮条A 纹移过。
所以 λδN =∆又因为对于迈克耳孙干涉仪光程差的改变量d ∆=∆2δ(Δd 为反射镜移动的距离)所以 d N ∆==∆2λδ所以0.25mm nm 10255002100024=⨯=⨯==∆λN d(2)因为迈克耳孙干涉仪无附加光程差并且 021==i i 0.121==n n它形成等倾干涉圆环条纹,假设反射面的相位不予考虑 所以光程差12222cos 2l l d i d -===δ 即两臂长度差的2倍若中心是亮的,对中央亮纹有: λj d =2 (1)对第一暗纹有:()212cos 22λ-=j i d (2)(2)-(1)得:()2cos 122λ=-i d2242sin 42sin 2222222222λ==⎪⎭⎫ ⎝⎛≈=di i d i d i d 所以︒====1.8rad 032.01000122di λ这就是等倾干涉条纹的第一暗环的角半径,可见2i 是相当小的。