当前位置:文档之家› (新)高考物理典型压轴题汇总含答案解析

(新)高考物理典型压轴题汇总含答案解析

典型高考物理压轴题集锦含答案解析1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。

卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G 2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM+G hR Mm +2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。

(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。

当物体匀速上行时力F '取最小。

由平衡条件0sin cos ='--'=f G F F x θθ 0cos sin =-'-'=θθG F N F y且有N f '='μ联立上三式求解得 N F 100='3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m ·s -2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H =0.50km .已知物体在密度为ρ的流体中以速度v 运动时受到的阻力F 可表示为F =21ρACv2,式中A 是物体的最大横截面积,C 是拖曳系数,与物体的形状有关.当卫星在高空中运行时,可以认为卫星的拖曳系数C =l ,取卫星的最大横截面积A =6.0m2.已知地球的半径为R0=6400km .试由以上数据估算卫星所在处的大气密度.解:设一年前、后卫星的速度分别为1v 、2v ,根据万有引力定律和牛顿第二定律有21211MmG m R R =v ⑴22222MmG m R R =v⑵式中G 为万有引力恒量,M 为地球的质量,1R 和2R 分别为一年前、后卫星的轨道半径,即10R R H =+⑶ 20R R H H =+-∆⑷卫星在一年时间内动能的增量22k 211122E m m ∆=-v v⑸由⑴、⑵、⑸三式得k 21111()2E GMm R R ∆=-⑹由⑶、⑷、⑹式可知,k 0E ∆>,表示在这过程中卫星的动能是增加的。

在这过程中卫星引力势能的增量P 2111()E GMm R R ∆=--⑺P 0E ∆<,表示在这过程中卫星引力势能是减小的。

卫星机械能的增量k P E E E ∆=∆+∆ ⑻由⑹、⑺、⑻式得21111()2E GMm R R ∆=--⑼0E ∆<,表示在这过程中卫星的机械能是减少的。

由⑶、⑷式可知,因1R 、2R 非常接近,利用12R R H -=∆ ⑽2121R R R ≈⑾⑼式可表示为2112GMmE H R ∆=-∆⑿卫星机械能减少是因为克服空气阻力做了功。

卫星在沿半径为R 的轨道运行一周过程中空气作用于卫星的阻力做的功212W F R ACR πρπ=-⨯=-v ⒀根据万有引力定律和牛顿运动定律有22Mm G m R R =v ⒁由⒀、⒁式得 1W ACGM ρπ=-⒂⒂式表明卫星在绕轨道运行一周过程中空气阻力做的功是一恒量,与轨道半径无关。

卫星绕半径为R 的轨道运行一周经历的时间2R T π=v⒃由⒁、⒃式得2R T RGM π=⒄由于在一年时间内轨道半径变化不大,可以认为T 是恒量,且12R T R GM π= ⒅以τ表示一年时间,有73600s 36524 3.1510s τ=⨯⨯=⨯⒆卫星在一年时间内做圆周运动的次数n T τ=⒇在一年时间内卫星克服空气阻力做的功 1W nW =(21)由功能关系有 W E =∆(22)由⒂⒅⒇(21)(22)各式并利用21M Gg R =得11ACR R gρτ=(23)代入有关数据得1331.5410kg m ρ--=⨯⋅(24)4、如图(甲)所示,弯曲部分AB 和CD 是两个半径相等的四分之一圆弧,中间的BC 段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,BC 段的长度L 可作伸缩调节。

下圆弧轨道与地面相切,其中D 、A 分别是上、下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。

一小球多次以某一速度从A 点水平进入轨道而从D 点水平飞出。

今在A 、D 两点各放一个压力传感器,测试小球对轨道A 、D 两点的压力,计算出压力差△F 。

改变BC 间距离L ,重复上述实验,最后绘得△F -L 的图线如图(乙)所示。

(不计一切摩擦阻力,g 取10m/s 2)(1)某一次调节后D 点离地高度为0.8m 。

小球从D 点飞出,落地点与D 点水平距离为2.4m ,求小球过D 点时速度大小。

(2)求小球的质量和弯曲圆弧轨道的半径大小。

解析:(1)小球在竖直方向做自由落体运动,221gt H D =水平方向做匀速直线运动 t V X D =得:s m gH xtx V D D 62===(2)设轨道半径为r ,A 到D 过程机械能守恒:)2(212122L r mg mv mv D A ++= 在A 点:rV mmg F A A 2=- 在D点:rV m mg F D D 2=+由以上三式得:rL mgmg F F F D A 26+=-=∆由图象纵截距得:6mg =12 得m =0.2kg 由L =0.5m 时 △F =17N 代入得:r =0.4m5 、如图所示,在光滑的水平地面上,质量为M=3.0kg 的长木板A的左端,叠放着一个质量为m=1.0kg 的小物块B (可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。

在木板A 的左端正上方,用长为R =0.8m 的不可伸长的轻绳将质量为m =1.0kg 的小球C 悬于固定点O 点。

现将小球C 拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O 点的正下方时,小球C 与B 发生碰撞且无机械能损失,空气阻力不计,取g =10m/s 2,求:(1)小球C 与小物块B 碰撞前瞬间轻绳对小球的拉力; (2)木板长度L 至少为多大时,小物块才不会滑出木板。

解析:(1)静止释放后小球做自由落体运动到a ,轻绳被拉紧时与水平方向成30︒角,再绕O 点向下做圆周运动,由机械能守恒定律得2021mv mgR =轻绳被拉紧瞬间,沿绳方向的速度变为0,沿圆周切线方向的速度为θcos 0v v a =小球由a 点运动到最低点b 点过程中机械能守恒()2221sin 121ba mv mgR mv =-+θ 设小球在最低点受到轻绳的拉力为F ,则Rv m mg F b2=-联立解得355.3==mg F N(2)小球与B 碰撞过程中动量和机械能守恒,则21mv mv mv b +=22212212121mv mv mv b += 解得 v 1=0,v 2=v b =25gR(碰撞后小球与B 交换速度) B 在木板A 上滑动,系统动量守恒,设B 滑到木板A 最右端时速度为v ,则()v M m mv +=2B 在木板A 上滑动的过程中,系统减小的机械能转化为内能,由能量守恒定律得 ()2222121v M m mv mgL +-=μ联立解得()2252⎪⎪⎭⎫ ⎝⎛+=gR M m g ML μ 代入数据解得L =2.5m6、如图所示,一根跨越一固定的水平光滑细杆的柔软、不可伸长的轻绳,两端各系一个质量相等的小球A 和B ,球A 刚好接触地面,球B 被拉到与细杆同样高度的水平位置,当球B 到细杆的距离为L 时,绳刚好拉直.在绳被拉直时释放球B ,使球B 从静止开始向下摆动.求球A 刚要离开地面时球B 与其初始位置的高度差.解析:设球A 刚要离开地面时联接球B 的绳与其初始位置的夹角为θ,如图所示,这里球B 的速度为v ,绳对球B 的拉力为T ,根据牛顿第二定律和能量守恒,有2sin T mg ml θ-=v ①21sin 2m mgl θ=v②当A 球刚要离开地面时,有 T mg =③以h 表示所求高度差,有 sin h l θ=④ 由①②③④解得13h l= ⑤7 (20分)如图所示,在高为h 的平台上,距边缘为L 处有一质量为M 的静止木块(木块的尺度比L 小得多),一颗质量为m 的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。

解析:设子弹以v 0射入时,木块的初速度为v 1,根据动量守恒定律有mv 0=(m+M) v 1 ①根据动能定理有 μ(m+M )gL=21(m+M )v 12 ②设子弹以2v 0射入时,木块的初速度为v 2,末速度为v 3,根据动量守恒定律有m2v 0=(m+M) v 2 ③根据动能定理有 μ(m+M )gL=21(m+M )v 22-21(m+M )v 32 ④设木块落地点距平台边缘的距离为x,由平抛运动规律有X= v 3g h 2 ⑤ 由①②③④⑤联立解得 x=gh m M mv 60 8、如图所示为某种弹射装置的示意图,光滑的水平导轨MN 右端N处与水平传送带理想连接,传送带长度L=4.0m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0m/s 匀速传动。

相关主题