当前位置:文档之家› 电路分析第十二章-二阶电路

电路分析第十二章-二阶电路



ω0 ωd
U0e−αt
能量转换关系
0 < ωt < β
β< ωt < π-β
π-β < ωt < π
uC+ -
C
R
L
uC+ -
C
R
L
uC+ -
C
R
L
在(π ~2π)的情况与(0 ~ π)情况相似,只是电容向相反 方向放电。如此周而复始,直到储能释放完毕。
特例 R = 0 时
则=α 0 ,ω= ω=0
K(t=0) 2KΩ a
b
5KΩ
iL(0+)= iL(0-)=0
uC(0+)=uC(0-)=5K×0.2mA=1V
π-ϕ <ωt<π 时,|uC| ↑ , iC ↓
电容吸收能量,电感释放能量。
电路处于欠阻 尼状态。
♠ 特征方程有两个相等的实根
Δ=(RC)2-4LC=0
R=2 L C
uC
特征根
p1
=
p2
=
p
=

R 2L
uC (t) = (K1 + K2t)ePt
0
t
电路处于临界阻尼状态。
例12-1 电路如图所示,开关K合闸已久,t=0时开关K打开,
∴ duC = − iL dt C
∴ duC (0+) = − iL (0+) = 0
dt
C
由uC(0+)=U0 ,得: k1e p1⋅0 + k2e p2⋅0 = U 0
即 k1+k2=U0
(1)
由 duC (0+) = 0 ,得: dt
k1 p1e p1t |t=0 +k2 p2e p2t |t=0 = 0
+
( R )2 − 1 2L LC
p2
=

R 2L

( R )2 − 1 2L LC
♠ 解的形式 uC (t) = k1e p1t + k2e p2t t > 0
♠ 由初始值定k1、k2

duC dt
(0+)
iL
uC(0+)= uC(0-)=U0
=
iC
=
−C
duC dt
∴ duC = − iL dt C
设 δ = R ω = 1 − ( R )2
2L
LC 2L
则 p1= -δ+j ω p2= -δ-j ω
uC
=
p2U 0 e p1t p2 − p1
+
− p1U 0 e p2t p2 − p1
=
(−δ − jω)U0
e(−δ + jω )t +
− (−δ + jω)U0
e(−δ − jω )t
(−δ − jω) − (−δ + jω)
uL
=
U0 p2 −
p1
(
p1e
p1t

p2e p2t )
图中:
UO uC UC
O
tm
♣ uC 、iC ≥0表明电容在整个过程中一 直处于放电状态;
♣ [0,tm]阶段,电感建立磁场、储能; [tm ,∞]阶段,电感释放能量。 ♣ t→ ∞, uC、iC、uL→0
iC
uL t
电路处于过阻尼状态。
tm对应iC的最大值
ω0 ωd
U0e−αt
i π−β π 2π−β


ωt

ω0 ωd
U0e−αt
(2) i 零点:ωt =0,π,2π ... nπ , i 极值点为uL零点。 uL零点:ωt = β ,π+β,2π+β ... nπ+β
uC, i
U0
uC
ω0 ωd
U0e−αt
i π−β π 2π−β


ωt
物理意义
uC U0
U0 uC
0
t
0
t
数学分析
(t=0)
R iL
♠ 列以uC为变量的二阶微分方程
− uC + uR + uL = 0
iC
=
−C
duC dt
uR = RiC
K +
+ UR - +
UC C
-
iC
UL L -
∴uR
=
R(−C
duC dt
)

uL
=
L
diC dt
∴ −uC
+
R(−C
duC dt
= U 0 e−δt [δ (e jωt − e− jωt ) + jω (e jωt + e− jωt )] 2 jω
=
U
0 e −δt
δ
(
ω
sin
ωt
+
cosωt)
= e−δtk sin(ωt + ϕ )
iC
= −C duC dt
= U 0 e−δt sin ωt ωL
uL
=
L
diC dt
= U0
储能,电阻消耗能量。
t > tm uC 减小 ,i 减小。
电容、电感均放出储能, 电阻消耗能量。
uC+
R
-C
L
uC+ -
C
R
L
储能释放完毕, 过渡过程结束。
(二) R < 2 L C
p1,2
= − R 2L
±
( R )2 − 1 =-α ± jω
2L LC
特征根为一对共轭复根
令 α = R (衰减系数)
第十二章 二阶电路
二阶电路:电路中含两个储能元件,可以用二阶 的微分方程来描述。
主要内容: ♣ 二阶电路的零输入响应 ♣ 二阶电路的零状态响应与完全响应 ♣ 二阶电路的阶跃响应与冲激响应
§12-1 二阶电路的零输入响 应
(t=0)
R iL
K +
+ UR - +
UC C
-
iC
UL L -
图示电路,uC(0-) =U0,iL(0-)=0 求t >0时uC(t)、iL(t)
δ 2 + ω 2 e−δt sin(ωt − ϕ ) ω
uC iC uL U0
π-ϕ π Oϕ
uL
2π ωt
(t=0)
R iL
K +
+ UR - +
UC C
-
iC
UL L -
0<ωt<ϕ时, uC ↓ , iC↑
电容释放能量,电感吸收能量;
ϕ <ωt< π-ϕ时, uC ↓ , iC ↓
电容释放能量,电感释放能量;
求uC 、 iL
解:1、求iL(0+) ,uC (0+) iL(0+)= iL(0-)=1A uC(0+)=uC(0-)=0
K(t=0)
1Ω +
1V 500Ω -
iL
+
3.85H uC 100µF
-
2、列t>0方程
u5uC0C0=+3.i8L 5+d1di0tL0 ×10−6
duC dt
=0
整理得:
t = 0,uL = U0 ,t = ∞,uL = 0 ;t =2 tm时 uL 最小。
由uL=0时计算出 tm :
uL
=
(
−U0 ( p2 − p1 )
p1e P1t

p2eP2t )
=
0
p2 = e p1tm p e p2tm
1
解得
( p1 e p1t − p2 e p2t ) = 0
ln p2
3.85H uC 100µF
-
求解二阶电路的零输入响应的方法
1、列电路的二阶微分方程
2、写出特征方程
ap2+bp+c=0
3、确定解的形式 Δ=b2-4ac
当Δ>0 ,特征根p1、p2为不相等的实根, 电路处于过阻尼状态
响应= k1e p1t + k2e p2t
当Δ<0 ,特征根p1、p2为一对共轭复根, 令 p1= -δ+jω p2= -δ-jω ,电路处于欠阻尼状态
uL
=
L di dt
=
(
− p2
U −
0
p1
)(Βιβλιοθήκη p1eP1t−
p2eP2t )
定性画 i ,uL 的曲线: uC, i, uL U0
uL uC
i
0 tm 2tm
t
(1)t = 0时 i=0 , t = ∞ 时 i =0; i 始终为正,t = tm 时i 最大。 (2) 0< t < tm ,i 增加 ,uL > 0; t > tm , i 减小,uL < 0
dt

diL dt
(0+) = 0
有:
Kcosϕ -10Ksinϕ =0……(2)
解得:K=1.02
Ksinϕ =1……(1)
ϕ =78.680
6、结果
iL(t)=1.02e-10tsin(50t+78.680)
uC
(t
)
=
3.85
diL dt
= −200e−10tsin50t(V )
500Ω
iL
+
1 ,=β π
相关主题