当前位置:文档之家› 无碳小车设计说明书

无碳小车设计说明书

无碳小车设计说明书
为响应“低碳生活”的号召,我们应该节能减排,以优化环境。

作为学生,我们更应践行。

我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。

我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。

设计思路
1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损
失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。

2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运
动的路线需有一定的周期性。

考虑到小车在转向时会受到摩擦等阻力的影响,让小
车行走最远路程是设计要求的最优解。

3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品
的最优设计。

小车的原理分析及构架设计
1.小车的质量要适中,以此来保证车的稳定性。

质量若太大,则会增加阻力。

2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。

3.传动的力与力矩要适中,保证加速度的适中。

4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。

5.S型的路线转弯半径要适中,保证其行程。

6.选择大小适中的轮子,轮子太大,稳步性降低。

7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。

小车的转向机构
转向轮及转向机构如图所示。

转向采用连杆机构传动,转向轮固定在支架上。

当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。

小车的驱动原理
重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。

在推杆与摇杆之间,有套筒相连,保证其作圆周运动。

杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。

栓线处为梯形原动轮。

起始时,原动轮的转动半径较大,起动转矩大,有利起动。

其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。

原动轮的半径变小,使总转速比提高。

小车缓慢减速,直到停止,物块停止下落,正好接触小车。

加工工艺的设计
1.小车底板部分挖空,减轻了整体的质量。

2.重物支撑架用三根圆柱杆支撑,有助于其稳定性。

3.后轮的大小适中,直径为182mm。

4.载物放置靠近轴处,稳定重心。

小车加工的尺寸
关于齿轮:
小齿轮A:M=1,Z=15,最大直径=15,尺宽b=6.5;
齿轮B: M=1,Z=45,最大直径=45,b=10;
B与A传动比i=1/3;
齿轮C:M=1,Z=60,最大直径=60,b=10;
C与A传动比i=1/4;
车轮厚度均为4mm,总高度H=515mm,总宽d=164mm.
小车计算的公式及推理
1.大轮半径为R,重物下降dh,转轴①半径为r1 ,转过角度dθ 1 ;同时转轴②半径
r2,转过角度dθ2,转轴③转过角度dθ3.
齿轮啮合组⑴的传动比为i1,齿轮啮合组⑵的传动比为i2 ;
公式:dh=r1dθ1 dθ2=dθ1/i1
dθ3=dθ 2 *i2=dθ1*i1*i2
2.关于转向:当转向杆与驱动轴角度为а,曲柄转过角度θ4,连杆长为L,曲柄半
径r4,摇杆长为c,转向轮中心到曲柄轴的长度为b;
公式:L2=c2(1-cosа)2+(b+csinа-r4cosθ4)2+r42sinθ4 2
θ3=θ4 ;
由上式得:а=f(θ3)
小车转弯的曲率半径为ρ=b/tanа+a1
3.小车行走ds过程中,小车整体转过的角度dβ, dβ=ds/ρ;
当小车转过角度为β时,有dx=-ds*sinβ,得小车从A点到B点的轨迹方程:
dy=ds*cosβ
x B=x A-(a1+a2)cosβ
y B=y A+(a1+a2)sinβ
4.综上所述:定义无碳小车各部件参数:
大轮半径R为91mm,转向轮半径r为25mm,连杆长L为183mm;
齿轮啮合组①的传动比i1为1/3,齿轮啮合组②的传动比i2为1/4;
转轴①转轴②转轴③的半径r1 r2 r3均为5mm
摇杆长为40mm;曲柄长为120mm;拴绳轴长为60mm
总述
在结合了机械原理和物理学的知识后,设计出的小车能走出S型的轨迹。

通过对无碳小
车结构特点的分析,我们进行了对齿轮参数和最大运动距离等等的计算。

小车理论上可以按照正常的曲线行走,但实际的结果必须从实践中得之,这也是理论设计的弊端。

通过这次学习,我们的创新能力得到了提高。

这次设计仍然存在很多的不足,这是下次需要注意的。

相关主题