鉴江钢管桩栈桥及钢管桩平台受力计算书2009年11月10日钢管桩栈桥及钢管桩施工平台受力计算书一、栈桥及钢管桩平添结构简介栈桥及钢管桩平台结构见附图,栈桥与钢管桩平台的结构形式类似,均采用钢管桩基础,每排采用3根直径为529mm的三根钢管组成,2Ⅰ30工字钢嵌入钢管桩顶作为横梁,横梁上纵桥向布置两组150cm 高公路装配式贝雷桁架主梁,每组两片贝雷桁架采用45cm宽花架连接。
贝雷桁架上横铺Ⅰ20b工字钢分布梁,分布梁间距为75cm,分布梁顶沿纵向铺设[16槽钢作为桥面板。
栈桥横向宽6m,每个墩两侧的钢平台平面尺寸均为15×6m。
二、栈桥及钢管桩平台各主要部件的应力计算1、贝雷桁架纵梁受力计算根据下面对横向分布Ⅰ20b工字钢梁的受力计算可以得知,两组贝雷桁架中的外侧贝雷片总有一片承受上拔力,贝雷片的受力极不均匀,取受竖直向下的最大荷载计算,单片贝雷架承受的最大荷载为9008×2=18016Kg(重车有两个后轴),按简支梁计算。
贝雷架的跨中弯矩最大值Mmax=18.0×12/4=54t.m,单片贝雷片容许弯矩为78.8 t.m,所以贝雷桁架纵梁的受力能满足需要。
单片贝雷片的抗剪能力为24.5t,通过下面对横向分布I20b工字钢的受力计算知其最大支座反力为9008Kg,两个重轴,此时贝雷片相当于在跨中作用9008×2=18016Kg的集中力,显然贝雷片的剪力等于9008Kg,小于24.5t,贝雷片抗剪能够满足要求。
2、钢管桩上横梁受力计算横梁支撑在钢管桩上,其支点距离为250cm,按两跨连续梁计算,取其最不利荷载,其计算简图如下:先计算P的值:P=6m贝雷桁架重量及桥面系总重的1/8+后轴总重的1/4=约2000Kg+7000=9000Kg采用清华大学结构力学求解器求得该梁的弯矩图如下:最大弯矩M max数值为490583Kg.cmσmax===519.8Kg/cm2=52.0MPa<f=215Mpa其抗剪能力不需计算,能够满足要求。
3、Ⅰ20b分布梁受力计算1)、抗弯应力计算查《公路桥涵设计通用规范》,按高速公路汽-20荷载,重车采用两个后轴,每个后轴重14t,每侧分布宽度取为60cm,一侧按作用在分布梁跨中时为分布梁跨中的最不利受力。
分布线荷载q=7000/60=116.7Kg/cm。
其计算简图如下:采用清华大学结构力学求解器求得该梁的弯矩图如下:跨中弯矩最大M max=245324Kg·cm分布梁为Ⅰ20b工字钢,其截面抵抗矩W=250cm3所以横梁的最大应力σmax===981.2Kg/cm2=98.1Mpa<f=215MpaⅠ20b分布梁抗弯应力能满足规范要求。
以上计算均为静载受力时的应力,考虑汽车荷载为动载,查荷载规范知动力系数为1.1,显然,考虑动载作用的最大应力值近似等于上述计算的弯应力乘以1.1,仍然小于规范要求的抗弯强度设计值。
215Mpa。
2)、抗剪能力计算采用清华大学结构力学求解器求得该梁的剪力图如下:最大剪力为5438Kg,采用《钢结构设计规范》4.1.2式计算工字钢剪应力:=,式中:V-----计算截面沿腹板截面作用的剪力S-----计算剪应力处以上毛截面对中和轴的面积矩I-----毛截面惯性矩t w-----腹板厚度V=5438Kg S= 19.78×7.39=146.2cm3 I=2500cm4 t w=0.9cm===353.3Kg/cm2=35.3MPa<f v=125Mpa(钢结构设计规范表3.4.1-1查得),所以Ⅰ20b工字钢抗剪能力满足要求。
3)、支座反力计算横向分布I20b工字钢的支点约束反力采用清华大学结构力学求解器计算如下:(其中结点编号参照上述计算简图)结点约束反力合力---------------------------------------- ----------------------------------------支座结点水平竖直力矩大小角度力矩--------------------------------------------------------------------------------------------2 0.00000000 -5438.54234 0.00000000 5438.54234 -90.00000 00 0.000000003 0.00000000 9007.97310 0.00000000 9007.97310 90. 0000000 0.000000004 0.00000000 8501.52215 0.00000000 8501.52215 90. 0000000 0.000000005 0.00000000 2078.92208 0.00000000 2078.92208 90. 0000000 0.00000000--------------------------------------------------------------------------------------------由上述计算可知,外侧贝雷片处的上拔力较大,为5438Kg,需做好横向分布梁与贝雷片上覆盖槽钢的焊接工作,经计算采用双面焊缝,焊脚高8mm以上,每侧焊缝长5cm可以满足要求。
4)、挠度计算采用清华大学结构力学求解器计算的最大挠度为0.06cm,0.06/305=1/5083<[f]=1/400,挠度计算能满足要求。
4、桥面铺装层计算(1)、当桥面采用δ1cm钢板时桥面钢板宽度为150cm,长度为600cm,顺桥向铺设。
查《公路桥涵设计通用规范》(JTG D60-2004),表4.1.1-2 车辆荷载主要技术指标,后轴重力标准值为2×140KN,由于有两个后轴,每个后轴轴载为140KN,后轴每侧车轮荷载为140/2=70KN;后轮着地宽度及长度为60×20cm,则可计算其面荷载为70/(60×20)=0.058KN/cm2=5.8Kg/cm2。
A:如果I20b工字钢间距为60cm,采用ansys建模计算的结果如下:其最大应力为3258Kg/cm2=325.8MPa>215MPa,最大相对变形为0.9cm,显然其受力无法满足要求。
B:如果I20b工字钢间距为50cm,采用ansys建模计算的结果如下:其最大应力为2152Kg/cm2=215.2MPa,略大于215MPa,最大相对变形为0.6cm,此时钢板受力能够满足要求,但显然材料的消耗量太大。
(2)、当桥面采用[16槽钢时1)、[16槽钢抗弯能力计算重车采用两个后轴,每个后轴重14t,由于每侧分布宽度为60cm,可以考虑作用在3片[16槽钢上面,在槽钢上的分布宽度(即轮压顺桥向长度)取为20cm,其分布线荷载q=7000/3/20=166.7Kg/cm。
其计算简图如下:采用清华大学结构力学求解器求得该梁的弯矩图如下:跨中弯矩最大M max=25102Kg·cm[16槽钢开口朝下,由于其对Y轴的界面抵抗矩上下不一样,开口侧的抵抗矩比腹板端要小很多,图中弯矩也是下口的数值大,所以只计算开口侧的应力即可。
其开口侧截面抵抗矩W=17.55cm3所以横梁的最大应力σmax===1430Kg/cm2=143Mpa<f=215Mpa所以桥面[16槽钢受力能满足要求。
[16槽钢考虑动载作用时的最大应力值近似等于上述计算的弯应力乘以1.1,σmax=143×1.1=157.3,完全能满足要求。
2)、[16槽钢抗剪能力计算采用清华大学结构力学求解器求得该梁的剪力图如下:最大剪力为2105Kg,采用《钢结构设计规范》4.1.2式计算槽钢剪应力:=,V=2105Kg腹板侧对中和轴的面积矩S1= 15.45×1.05=16.22cm3开口侧对中和轴的面积矩S2= 7.52×2.17=16.3cm3取S=16.3 cm3 I=83.4cm4 t w=1cm===411Kg/cm2=41.1MPa,f v=125Mpa所以[16槽钢抗剪能力满足要求。
3)、[16槽钢支座反力计算[16槽钢间距为75cm,[16槽钢的支点约束反力采用清华大学结构力学求解器计算如下:(其中结点编号参照上述计算简图)结点约束反力合力支座--------------------------------------- -------------------------------------结点水平竖直力矩大小角度力矩--------------------------------------------------------------------------------------------1 0.00000000 -175.815274 0.00000000 175.815274 -90.00 00000 0.000000002 0.00000000 1366.50372 0.00000000 1366.50372 90. 0000000 0.000000003 0.00000000 1206.86800 0.00000000 1206.86800 90. 0000000 0.000000004 0.00000000 2035.36542 0.00000000 2035.36542 90. 0000000 0.000000005 0.00000000 232.160621 0.00000000 232.160621 90. 0000000 0.00000000--------------------------------------------------------------------------------------------由上述计算可知,[16槽钢上拔力只有175Kg,槽钢与I20b工字钢之间只需点焊即满足要求。
综合以上计算,栈桥桥面采用[16槽钢受力能够满足要求,且用材经济,确定采用[16槽钢作为栈桥桥面。
三、栈桥整体稳定性计算经过调查,施工时桥位处的最大水流速度2m/s,钢管桩顶离水面高度约为3m,水深约为9m,钢管桩振打入土深度约7m。
施工过程中假设钢管桩离以上2m范围的钢管桩处于嵌固状态。
则可建立如下的力学模型:1、计算水流压力查《公路桥涵设计规范》(1989)《公路桥涵设计通用规范》(JTJ021-89)(2.3.10)公式:P=KA(kN)式中——水的容重(kN/m3)V——设计流速(m/s)A——桥墩阻水面积(m2),一般算至一般冲刷线处,A=0.529×9=4.8 m2g——重力加速度9.81(m/s2)K——桥墩形状系数,对圆形钢管桩取0.8。