1前言1.1 高速切削简介高速切削的概念被提出后,经过了长期探索研究与发展后,才在近十几年被广泛应用在机械加工过程中。
高速切削作为一种新兴的先进机械加工技术,与传统的机械加工技术相比,其具有一系列的优点。
它集高效率、高加工精度、低功耗等于一体。
高速切削解决了常规切削加工中一些长期存在而无法解决的问题,例如由于机械加工过程中,刀具的切削量很小,产生的切削热比较少并且绝大部分切削热被切屑及时带走,从而提高了刀具的切削寿命;随着切削速度的提高,在单位时间内被加工材料的去除率有了很大的提高,进而减少了切削时间,提高了工件的加工效率;高速切削的进给量小,因而切削力也就相对要小,而且形成的切屑能够在很短的时间内被排出,切削过程所产生的热量在还没有传导至刀具时,就被切屑带走了,这样就降低了刀具及工件上的切削热;由于高速切削可以达到很高的加工精度,所以在某些场合可以实现以车代铣、以铣代磨等工序。
这些优点极大地缩短了产品的制造周期,这在竞争日益激烈的当代是很有发展前途的。
1.2 磁悬浮轴承简介磁悬浮轴承也被人们称为磁力轴承,它是一种靠磁场力来承受载荷或将转子悬浮起来的一种新型的支承形式,根据不同的工作原理可将磁悬浮轴承系统分为三大类:主动磁悬浮轴承、被动磁悬浮轴承和混合式磁悬浮轴承。
主动磁悬浮轴承是利用可控电磁力来悬浮主轴转子的,它有主动电子控制系统;被动磁悬浮轴承是利用磁场本身的特性使主轴转子悬浮,它没有主动电子控制系统,其应用最多的是永磁轴承;混合式磁悬浮轴承是由主动磁悬浮轴承和被动磁悬浮轴承以及其他一些必要的辅助支撑共同组合而成的,它既有主动磁轴承的优点也有被动磁轴承的优点。
为了便于设计制造,本设计中采用主动磁悬浮轴承磁悬浮轴承具有一系列的优点:定子与转子之间无接触,因而无摩擦,且功耗低,可以使主轴实现高速旋转;无需润滑和密封,因而可以简化系统结构的设计;支撑精度比一般的接触式轴承还高,工作稳定可靠。
但是,其支撑刚度比接触式轴承要低,而且结构复杂,需要专门的控制系统,主轴上还要设计增加位移传感器,成本较高。
虽然磁悬浮轴承由多个磁极构成,但是为便于研究【2】,我们仍然可以将其简化为下图所示结构。
图1.1磁悬浮轴承简化模型根据麦克斯韦电磁力公式,我们可以得到磁悬浮定子与其转子之间的电磁吸引力为F=B02*A0/μ0…………………………………(1.1)式中B0——气隙中的磁感应强度(单位T)A0——定子与转子铁心间气隙的横截面积(单位m2)μ0——空气磁导率(单位H/m,μ0=4 *10-7H/m)由安培环路定理我们可以推出B0=N*i*μ0/(2*x0) ……………..………….. (1.2)式中N——磁悬浮线圈绕组的匝数i——磁悬浮线圈中通过的电流(单位A)x0——磁悬浮轴承定子与其转子铁心间气隙的长度(单位m)将式(2)代入式(1)可得F=μ0N2Ai2/(4 x02)……………..…….….….(1.3)令k=μ0N2A/4………………….……..………..(1.4)则(3)式可写为F= k*i2/x02…………………....….………….(1.5)由式(4)可知,k值完全取决于磁悬浮轴承的结构参数,因此当磁悬浮轴承的结构一定时,k即为常数。
由式(5)可知磁悬浮轴承的定子与转子间的电磁吸力的大小除与其本身结构参数有关外,还与线圈中电流的平方成正比,与气隙值的平方成反比。
1.3 选题目的与意义随着科学技术的进步与发展,高速切削在航空航天,汽车模具等需要高精度的机加工领域得以迅速的发展[3],因为高速切削可以实现工件加工的高精度以及加工过程的干切削,因此它在某种程度上改变了材料加工的现状,极大的提高了材料加工的效率,在许多情况下,其加工精度可以实现以铣代磨、以车代铣[4]。
然而,机床高速切削的实现,不仅需要有高速进给系统和高速切削刀具系统作为支撑,机床主轴的高速化也是一个不可或缺的重要条件。
为了比较容易的获得主轴高速,我们可以用采用了磁悬浮轴承的高速电主轴来实现主轴高速化。
高速切削在工业加工领域的应用,可以提高生产效率,降低生产成本,节约能源,对国民经济起到极大的促进作用。
磁悬浮轴承具有一系列的优点,例如,它无机械接触,因而无磨损且不需润滑,并且轴承功耗低。
但是,我国磁悬浮技术在这方面的应用较少,并且随着十二五规划的实施,高效节能环保的新型工业生产方式,将会有更大的应用与发展的空间。
1.4 主要设计内容及技术要求1.4.1 电磁轴承结构研究电磁悬浮轴承[5]主要由机械部分,气隙检测部分和电磁力控制部分构成。
其机械部分主要由外套筒和转轴两部分组成,外套筒安装在基座上,电磁铁安装在外套筒内部,转轴部分则主要由硅钢片和软铁等铁磁材料制成。
在外套筒内部安装若干个位置传感器,当主轴受到外力作用而偏离中心平衡位置时,位置传感器将主轴的位移量转换成电量,送至控制器,经过数据处理之后,由控制器发出控制信号经由功率放大器放大后驱动电磁线圈改变磁场强度,进而改变电磁力的大小,使主轴返回原来的平衡位置。
1.4.2 电磁轴承控制器设计(承载能力和稳定性)首先要明确磁悬浮轴承需要承受的总的作用力,以保证磁悬浮轴承能够使主轴可靠地悬浮。
然后根据电磁学的基本原理及设计要求,计算出磁悬浮轴承系统中主要的电磁参数,如电磁悬浮线圈匝数、磁极面积、线圈电感等。
再根据需要测量的位移方向来确定位移传感器需要使用的数量及位置分布,同时还要设计一个位移信号处理电路,即控制器,通过它对获得的位移电量进行运算处理,控制器输出的控制信号传送至功率放大驱动电路,由功率放大驱动电路来驱动磁悬浮轴承的悬浮线圈改变磁场强弱,从而使偏离悬浮中心的主轴返回中心位置。
同时为了保证控制的精确性,我们可以在控制电路中增加反馈电路,将功率放大驱动电路的输出信号反馈给控制器,由控制器对反馈信号进行处理,从而调整其对悬浮线圈的控制电流以保证控制精度。
1.4.3掉电保护功能(增加辅助轴承)当系统掉电时,磁悬浮线圈由于失去控制电流而使电磁铁失去磁性,导致磁悬浮主轴由高速悬浮运转变成突然与磁悬浮轴承定子接触的运转,这样就会造成磁悬浮轴承的转子与定子的工作面的接触和摩擦,又由于磁悬浮轴承系统没有润滑装置,就会使得磁悬浮轴承的转子与定子工作面产生磨损甚至烧结。
为了避免此种情况的发生,我们在设计过程中必须在磁悬浮主轴上增加辅助保护轴承。
作为辅助保护轴承,必须要满足能够在高速情况下运转,同时,为了保证加工精度,避免因磁悬浮主轴受热向前伸长,还要在系统中增加轴向固定轴承,为了使其能够满足高速运动,我们可以考虑使用轴向磁悬浮轴承。
1.4.4 电磁轴承临界转速分析临界转速是指当主轴旋转时,会使主轴出现挠度急剧增大、转动失稳现象的旋转速度。
主轴工作转速应远离各阶临界转速,否则主轴将有可能处于共振区而产生剧烈振动,进而对磁悬浮主轴系统的稳定性造成影响。
同时磁悬浮主轴在启停过程中总会经过其一阶临界转速,这仍会使主轴产生振动,因此增加辅助支撑也是有必要的。
1.4.5满足电磁轴承装配要求由于磁悬浮主轴转速很高,所以当磁悬浮轴承装配精度达不到要求时,磁悬浮主轴在高速状态下就会出现振动,因此不仅要保证磁悬浮轴承的装配要求,还要保证磁悬浮主轴的同轴度要求,在主轴零部件装配完成后,还要进行动平衡试验。
为了保证磁悬浮主轴在高速运转时的回转精度和刚度,一些关键零部件必须进行精密加工或超精密加工,其尺寸误差一般要控制在微米级或更小,对同轴度、垂直度和表面粗糙度也都有极严格的要求。
1.4.6机械结构设计参考普通机床主轴设计,磁悬浮主轴采用阶梯轴的结构形式,本设计中采用主轴中空结构,这种结构可以保证主轴在承受相同转矩的条件下,有效地减轻主轴的重量,同时可以为安装刀具拉紧装置等预留出安装空间。
位于磁悬浮轴承处的转子上通常装有由薄层硅钢片叠装而成的套筒,这样可以保证更好的导磁性,已尽最大可能地减小涡流,并使用锁紧螺母固定。
1.5设计要求给定的设计数据为:套筒直径:210mm;最高转速:20000r/min;输出功率:2.5kw;基速:20000r/min;基本转矩:5Nm;润滑:油脂润滑;刀具接口:HSK系列。
2结构设计前基本参数的确定2.1 电机参数的确定由于本设计中电机转子安装在磁悬浮主轴上,且电机定子需要安装在外套筒内部,所以在本设计中选用无外壳内置式电机,为了满足设计要求,即电机的额定功率、额定转矩、最高转速等要大于或等于磁悬浮主轴设计要求的输出功率输、出转矩和最高转速,根据这些条件选定的电机型号为1MB140B,其具体参数见下表:表2.1 1MB140B型内置电机参数2.2 气隙值的确定考虑到对磁悬浮轴承承载能力方面的要求,设计时应尽最大可能减小磁悬浮轴承的定子与其转子之间的气隙值x0,由于在同样的载荷条件下,气隙值x0越小,则磁悬浮轴承的尺寸也就相应的小,或者说在磁悬浮轴承尺寸一定的情况下,气隙值x0越小,其承载能力也就越大,然而,由于加工技术及加工成本,控制系统的性能等方面因素的限制,气隙值x0不能无限制地缩小,一般情况下,设计气隙值x0时应考虑转子的直径,一般当d<100mm时x0=0.3——0.6mm当100mm<d<1000mm时x0=0.6——1.0mm在本设计中,由于对磁悬浮主轴控制系统要求不高,并且由所选电机可知,转子直径小于100mm,所以径向磁悬浮轴承设计的气隙值x0取0.5mm,轴向磁悬浮轴承设计的气隙值x0也取0.5mm。
2.3 磁感应强度B的确定本设计中径向磁悬浮轴承的定子为硅钢片叠压而成,所选用的硅钢片的饱和磁感应强度B s查表可得B s=1.95T,为了保证出现最大电流时,不会使磁感应强度达到硅钢片的饱和磁感应强度,取最大磁感应强度B m=1.4T。
本设计中轴向磁悬浮轴承的定子为软铁材料,查表可得软铁材料的饱和磁感应强度B s=1.5T,同样为了保证出现最大电流时,不会使磁感应强度达到软铁的饱和磁感应强度,取最大磁感应强度B m=1.4T。
2.4 径向磁悬浮轴承定子磁极对数的确定磁悬浮主轴转子在径向X方向和Y方向存在位移[6],即转子其径向平面内能够产生四个方向的位移:X+,X-,Y+,Y-,所以定子在这四个方向都应装有电磁铁,又由于磁力线应形成闭合回路,所以定子的每个方向上至少应有一对磁极,为了设计简单以及经济实用,本设计中定子的磁极数取p=8,同时为了便于制造,每个磁极均采用矩形结构,径向磁悬浮轴承定子结构简图如下图所示:图2.1 径向磁悬浮轴承定子结构简图3磁悬浮主轴机械部分设计3.1磁悬浮转子设计由于设计要求主轴转速为20000r/min,而传统的切削刀具的刀柄接口在主轴转速超过10000r/min时就已经不能满足刀具可靠的连接要求,因此根据设计要求,本设计中选用高速性能优良、连接可靠的HSK-E25系列刀具接口。