统计热力学
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )
或
q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
∆εt < ∆ε r < ∆εV < ∆εe < ∆ε n
一般 ∆ ε和t 分∆别ε为r
和10−19 k,T能级差1很0−小2 k,T分子较容易实现从低能级向高能级的跃迁,因
此可将平动和转动近似当作能量连续变化的情况来处理。而 约为 , 约为 , ∆ε值V 更
大1,0所kT以处理振∆动εe、电子1运0动2 k和T 核运∆动ε n时,必须考虑能量变化的不连续性。能量较高的分子可
θV = hν / k 所以氏只取决于分子本身,一般分子的氏值数量级为 103 K
12.
q’e=ge,0
式中q’e为电子运动配分函数(选εe,0=0),ge,0为电子运动的基态简并度。除O2及NO等少数分子以
外,大多数分子的队ge,0=1,即电子运动的基态是非简并的,因而它们的q’e=1。
13.
q’n=gn,0
第 3 章 统计势力学
3.1 重要概念
1.能量量子化及能级间隔
分子的运动具有平动、转动、振动、电子运动和核运动五种形式。若把这些运动视为相互
独立的,则分子的能量为
ε = εt + εr + εV + εe + εn
由于等式右端的五种能量都是量子化的,所以分子能量ε是量子化的。分子的状态用量子数描
述,称做量子态。分子总是处在一个个数值不连续的能级上。同一能级上所包括的不周量子态
N 确定的情况。即在能够实现系统的同一宏观状态的所有分布中,不论哪一种分布类型,对独
立于系,均要满足 4.配分函数
∑ ni = N
能级
∑ niεi = U
能级
∑ 由定义q = gi exp(− εi / kT ) 可知,配分函数代表分子可占用的所有能级上的有效量子态
之和。q 是;个无量纲的微观量,其值的大小与分子性质有关,但它并不是分子本身固有的性
择性,零点能的选择将产生如下影响:
(1)对各能级的能量标度产生影响。若基态能量为ε0(ε0≠o)时任一能级的标度为εi,当将基态能
量定为ε0’=0 时,上述能级的标度为εi’,则
ε
' i
=
εi
−ε0
(2)对配分函数产生影响。能量标度的改变造成各能级的 Boltzmann 因子的改变,从而导致配
分函数值的变化。若(1)中两种选择时的配分函数分别为 q 和 q’,则
4.请说明配分函数的定义和物理意义。
5 q 和 q’的区别是什么?它们关系如何?
6.在相同的条件下,定域子系的微观状态数
∏ Ω定பைடு நூலகம்= N!Σ i
S = St + Sr + SV + Se + Sn
在利用此关系进行具体计算时,只需计算St,Sr和Sv即可。
3.2 主要公式
1.
( ) εt
=
h2 8mV 2/3
nx2
+
n
2 y
+
nz2
式中εt为分子的平动能,V为分子可以平动的空间体积,m为分子质量,A为P1anck常数
( h = 6.6262)×,1n0x−,34nJy,• 和s nz为平动量子数,它们均可以取任意正整数。可以看出,平动能级
增加。因此从本质上讲,影响微观状态数的因素就是影响熵的因素:①分子数越多,熵值越
大。例如,分解反应导致久值增加,这是由于分子数增加,使得Ω值增大,于是S值增大。②分
子占用的能级越多,S值越大。例如,当温度升高时,许多分子由于吸收能量而向较高能级跃
迁,即分子占用的能级数增多,因而Ω值增大,S值增加。当体积增大(膨胀)时,使得平动能级
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+U0
(2)S = k ln qN + NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
= k ln q'N +NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
= −kT ln q'N +U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
N!
⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
N!
=
−kT
ln
q'N N!
+U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂V ⎠T ,N
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
Avogadro常数。 15.
Sr,m
=
R⎜⎜⎝⎛ ln
8π 2IkT σh2
+ 1⎟⎟⎠⎞
式中Sr,m为双原子分子理想气体的摩尔转动熵,I和σ分别为分子的转动惯量和对称数。
[ ] 式中16S.V,m为双原子分子理想气SV体,m的=摩R尔⎢⎣⎡ e振xp动(θθ熵VV ,//TT久)为−1分−子ln的1振−动ex特p(征−温θV度/ T。)
质,当系统的 U,V,N 确定时 q 有定值。通常记作 q=f(T,V,N)。配分函数在统计力学中占有
极其重要的地位。平衡统计力学的主要任务之一是用分子性质计算系统的宏观性质,这一任务
正是通过配分函数来完成的。
5.零点能的取值
能量值总是相对的,所以任一能级的能值总是相对于零点能的取值。而这种取值具有人为选
A 是 B01tzmann 常数,它与摩尔气体常数及有关
k = R / L = 1.3806 ×10−23 J • K −1
是=只/人=l。3806×10—23J.K—1
此处 L 是 Avogadro 常数。
ni∗ = gi exp(− εi / kT )
N
q
5. 此式称为Bo1tzmann分布定律。式中ni∗代表在最可几分布时具有能量εi的分子数,N是系统 中的分子总数,gi是能级εi上的简并度,q是分子配分函数,其定义为
+U0
(6)G = −kT ln qN + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂V ⎠T ,N
=
−kT
ln
q'N
+ NkTV
⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
+U0
在以上各式中q’代表将基态能量规定为零时的配分函数,U0代表当系统中所有分子都处在基态 (即系统处于 0K)时系统的能量,即U0=Nε0。
间隔变小,平动能级变得密集,于是分子占据的能级数增多,结果Ω值增大,S值增加。③能级
的简并度越大,S值越大。例如,在一定温度和压力下,对同一种物质而言,液体的熵大于固体
的熵,气体的熵大于液体的熵,即Sm(g)>Sm(1)>Sm(s)。这是由于液体分子比固体增加了转动 运动,而气体分子又比液体分子增加了平动运动。分子运动形式越多,各能级的简并度越大,
m1 + m2
其中m1和m2分别为分子中两个原子的质量,r为原子间距离,µ称约化质量。
3.
εV
= ⎜⎛ v + ⎝
1 ⎟⎞hν 2⎠
式中εv代表双原子分子的振动能,h为P1anck常数,ν为振动频率,v为振动量子数,其值为 0,
1,2,•••等整数。
4.
S = k ln Ω
此式称做 Boltzmann 公式,其中 3 为系统的炳,6 为微观状态数,
式中认为核运动配分函数(εn,0=0),gn,o为核运动的基态简并度。因为在一般物理化学过程中,
不涉及原子核状态的变化,所以在计算热力学量时可略去核运动。
14.
St,m
=
R
⎪⎨⎧ln ⎪⎩
⎡ ⎢ ⎣
(2πmkT
Lh3
)3
2
Vm
⎤ ⎥ ⎦
+
5 ⎪⎫
2
⎬ ⎪⎭
此式称为Sacker—Tetrode方程。其中St,m为理想气体的摩尔平动熵,Vm为摩尔体积,L为
9
qt
=
(2πmkT )3
h2
2
V
此式表明,平动配分函数与体积有关。当T和V固定时,qt取决于分子质量m。
10.
qr
=T σθ r
=
8π 2IkT σh2
式中qt为双原子分子的转动配分函数;σ是分子的对称数,对异核双原子分子σ=1,而同核双原
子分子的σ=2;θt是分子的转动特征温度,其定义为
θr
=
h2 8π 2Ik
Ω就越大,使得S值越大。
3。Bo1tzmann 统计及其宏观约束条件
Bo1tzmann 统计属于平衡统计,它以等几率假设为基础,用最可几分布代表平衡状态。
Bo1tzmann 分布定律指出,在最可几分布时,任一能级上的分子在总分子数中所占的比例等于
该能级上的有效量子态在总有效量子态中所占的比例。该定律的导出,是基于系统的 U,V 和
k
q = ∑ gi exp(− εi / kT ) i=0