计量经济学复习范围一、回归模型的比较1.根据模型估计结果观察分析(1)回归系数的符号和值的大小是否符合经济理论要求 (2)改变模型形式之后是否使判定系数的值明显提高 (3)各个解释变量t 检验的显著性 2.根据残差分布观察分析在方程窗口点击View \ Actual ,Fitted ,Residual\Tabe (或Graph )(1)残差分布表中,各期残差是否大都落在σˆ±的虚线框内。
(2)残差分布是否具有某种规律性,即是否存在着系统误差。
(3)近期残差的分布情况二、 判断新的解释变量引入模型是否合适(遗漏变量检验) 1、基本原理如果模型逐次增加一个变量, 由于增加一个新的变量,ESS 相对于RSS 的增加,称为这个变量的“增量贡献”或“边际贡献”。
不引入:0H (即引入的变量不显著)())'','(~)''/(/'k k F k n RSS k ESS ESS F new old new --=或 )'','(~/)1(/)(''2'22k k F kn R k R R F NEW OLD NEW ---= 其中,'k 为新引进解释变量的个数,''k 为引进解释变量后的模型中参数个数。
判别增量贡献的准则:如果增加一个变量使2R 变大,即使RSS 不显著地减少,这个变量从边际贡献来看,是值得增加的。
若F>F或者对应的P 值充分小,拒绝则认为引入新的解释变量合适;否则,接受则认为引入新的解释变量不合适。
三、伪回归的消除如果解释变量和被解释变量均虽随时间而呈同趋势变动,如果不包含时间趋势变量而仅仅是将Y 对X 回归,则结果可能仅仅反映这两个变量的同趋势特征而没有反映它们之间的真实关系,这种回归也称为伪回归。
模型的结构稳定性检 CHOW 检验法 1、基本原理模型结构稳定性,是指模型在样本期的不同时期(子样本),其参数不发生改变。
若模型参数样随样本期(子样本)的不同而发生改变,则称模型不具有结构稳定性。
另外,还可以引入虚拟变量 四、模型的拟合优度检验“拟合优度”,即所估计的模型对样本数据的近似程度,常用判定系数反映。
i ki k i i i X b X b X b b Y ε+++++=Λ22110n i ,,2,1Λ=1、总误差平方和的分解=-∑2)(y y i 22)ˆ(i i e y y∑+-∑总误差(TSS )=回归误差(ESS )+剩余误差(RSS )自由度 )1()1(--+=-k n k n2.判定系数2R∑∑∑∑--=--=22222)(1)()ˆ(y y e y y y y Ri i i i∑∑∑∑∑------=221102ˆˆˆ1y n y y x b y x b y b y i iki k i i i iK0≤2R ≤1 , R 2的值越接近于1,则表明模型对样本数据的拟合优度越高。
经济意义:在被解释变量的变动中,由模型中解释变量变动所引起的比例,即y 变动的%1002R 是由模型中解释变量变动所引起。
3.判定系数与相关系数的区别和联系区别:(1)判定系数反映变量间不对称的因果关系(2)相关系数反映变量间对称的线性相关关系 联系:TSSRSS TSS ESS R -==1 一元线性判定系数相关系数=()()--==222y y x x R r 11≤≤-r多元线性4.比较解释变量个数不同模型优劣时,利用如下三个指标 ⑴ 调整的判定系数2R)1(111)1()1(122R k n n n TSS k n RSS R -----=----=2R 越大,模型拟合优度越高。
⑵ SC (Schwarz Criterion ,施瓦兹准则)SC = n nk n e i ln 1)ln(2++∑ ⑶ AIC(Akaike Information Criterion ,赤池信息准则)AIC = nk n e i )1(2)ln(2++∑ SC 和AIC 越小,表明模型的拟合优度越高。
方程的显著性检验——R F ,检验法方程的显著性检验,就是检验模型对总体的近似程度。
最常用的检验方法是F 检验或者R 检验。
1. F 检验i ki k i i i x b x b x b b y ε+++++=Λ22110 n i ,,2,1Λ=0:210====k b b b H K1//)ˆ(22--∑-∑=k n e k y yF i i ~ )1,(--k n k F 给定的显著水平α,可由F 分布表查得临界值αF ,进行判断:若F >αF ,拒绝0H ,方程的线性关系显著;若F ≤ αF ,接受0H ,方程的线性关系不显著,回归方程无效、重建。
()()∑∑---==222ˆ1y y y y R R 10≤≤R检验通不过的原因可能在于:⑴ 所选取的解释变量不是影响被解释变量变动的主要因素,或者说影响y 变动的主要因素除方程中包含的因素外还有其它不可忽略的因素;⑵ 解释变量与被解释变量之间无相关关系; ⑶ 解释变量与被解释变量之间不存在线性相关关系; ⑷ 样本容量n 小。
2.R 检验⑴ R 2与F 的关系22221111//)ˆ(R R k k n TSS RSS TSS ESS k k n k n e k y yF i i -⋅--=⋅--=--∑-∑= 可见,F 为R 2的单调递增函数 ⑵ 相关系数由于kF k n kFR +--=)1(2则 αααkF k n kF R +--=)1(在一元线性回归中,R 称为简单相关系数,且│R │≤ 1,即-1≤R ≤ 1 在多元线性回归中,,R 称为复相关系数,且0≤R ≤1。
给定显著性水平α和自由度1--k n ,即可查表找到αR 判断:︱R ︱>αR ,方程线性关系显著。
︱R ︱≤αR ,方程线性关系不显著,回归方程无效,重建方程。
F 检验与R 检验结果一致,实际应用可选择其一。
解释变量的显著性检验-t 检验法对于模型 iki k i i i X b X b X b b Y ε+++++=Λ2211.0在),0(.~2σεN i 之下,检验解释变量jx 对y 是否有显著影响,建立假设0:0=j b H ,0:1≠j b H)1(~)ˆ(0ˆ---=k n t b se b t jjj当jt >2αt ,或所对应的伴随概率p <α时,拒绝0H,即认为j X 对Y 有重要线性影响;当jt ≤2αt ,或所对应的伴随概率p ≥α时,接受0H,即认为j X 对Y 无重要影响,应考虑将其从模型中剔除,重新建立模型。
解释变量显著性检验通不过的原因可能在于: ⑴ j x 与y 不存在线性相关关系; ⑵jx 与y 不存在任何关系;⑶ i x 与jx (i ≠j)存在线性相关关系。
五、最小二乘原理所选择的回归模型应该使所有观察值的残差平方和达到最小,即∑∑-=22)ˆ(ii i y y e =最小多重共线性产生的原因 对于模型yi=b0+b1x1i+b2x2i+…+bkxki+εi ,若解释变量之间存在较强的线性相关关系,即存在一组不全为零的常数λ1,λ2,…λk ,使得:λ1x1i + λ2x2i +…+ λkxki +νi=0 则称模型存在着多重共线性如果νi= 0,则称存在完全的多重共线性。
六、多重共线性的检验 (一)简单相关系数检验法计算解释变量两两之间的相关系数。
一般而言,如果每两个解释变量的简单相关系数比较高,则可认为存在着较严重的多重共线性。
【命令方式】COR 解释变量名【菜单方式】将所有解释变量设置成一个数组,并在数组窗口中点击View\ Correlations 。
(二)方差膨胀因子法方差膨胀因子越大,表明解释变量之间的多重共性越严重。
反过来,方差膨胀因子越接近于1,多重共线性越弱。
一般当VIF>10时(此时Ri2 >0.9 ),认为模型存在较严重的多重共线性。
另一个与VIF 等价的指标是“容许度”(Tolerance ),当0≤TOL ≤1;当xi 与其它解释变量高度相关时,TOL →0。
因此,一般当TOL<0.1时,认为模型存在较严重的多重共线性 (三)直观判断法1. 当增加或剔除一个解释变量,或者改变一个观测值时,回归参数的估计值发生较大变化,回归方程可能存在严重的多重共线性。
2. 从定性分析认为,一些重要的解释变量的回归系数的标准误差较大,在回归方程中没有通过显著性检验时,可初步判断可能存在严重的多重共线性。
3. 有些解释变量的回归系数所带正负号与定性分析结果违背时,很可能存在多重共线性。
4. 解释变量的相关矩阵中,自变量之间的相关系数较大时,可能会存在多重共线性问题。
(四)逐步回归检测法将变量逐个的引入模型,每引入一个解释变量后,都要进行F检验,并对已经选入的解释变量逐个进行t 检验,当原来引入的解释变量由于后面解释变量的引入而变得不再显著时,则将其剔除。
以确保每次引入新的变量之前回归方程中只包含显著的变量。
在逐步回归中,高度相关的解释变量,在引入时会被剔除。
因而也是一种检测多重共线性的有效方法。
(五)特征值检验若模型存在完全多重共线性,rank(X)<k+1, 而当模型存在严重的多重共线性时, (六)Theil 效应系数检验法式中R2 为样本方程判定系数;Rj2为不含Xj 的样本方程判定系数,RT2为Theil 效应系数。
判断:RT2 =0,无多重共线性;RT2接近于1,样本回归方程的解释变量与被忽略的之间存在严重的多重共线性。
补救办法:(一)剔除变量法 直接剔除次要或可替代的变量,或者把方差扩大因子最大者所对应的自变量首先剔除再重新建立回归方程,直至回归方程中不再存在严重的多重共线性。
需注意产生新的问题:①模型的经济意义不合理;②是否使模型产生异方差性或自相关性;③若剔除不当,可能会产生模型设定误差,造成参数估计严重有偏 (二) 增大样本容量如果样本容量增加,会减小回归参数的方差,标准误差也同样会减小。
因此尽可能地收集足够多的样本数据可以改进模型参数的估计。
(三) 变换模型形式将线性方程变换为差分方程、双对数模型、半对数模型等。
注意:差分会丢失一些信息,差分模型的误差 项可能存在序列相关,可能会违背经典线性回 归模型的相关假设,在具体运用时要慎重。
(四) 利用非样本先验信息通过经济理论分析能够得到某些参数之间的关系,可以将这种关系作为约束条件。
(五) 横截面数据与时序数据并用首先利用横截面数据估计出部分参数,再利用 时序数据估计出另外的部分参数,最后得到整 个方程参数的估计。
注意:这里包含着假设,即参数的横截面估计和 从纯粹时间序列分析中得到的估计是一样的。