当前位置:文档之家› 大跨度桥梁的稳定理论

大跨度桥梁的稳定理论

实际工程中的稳定问题一般都表现为第二类失稳。但是, 由于第一类稳定问题是特征值问题,求解方便,在许多情况 下两类问题的临界值又相差不大,因此研究第一类稳定问题 仍有着重要的工程意义。
图 12.1 中心受压的理想直杆
12.1.3 稳定问题求解方法的评述
研究压杆屈曲稳定问题常用的方法有静力平衡法(Eular 方法)、能量法(Timoshenko方法)、缺陷法和振动法 。
12.1.2两类稳定问题
物体的平衡可能是稳定的、不稳定的或者是随遇的。 物体从一种平衡状态稍微偏至邻近状态之后,如果仍能回 复到原来的状态,则原来的平衡状态为稳定的;如果不能 回复到原来的状态而将继续离去,则原来的平衡状态为不 稳定的;如果可以在任意新的位置上保持平衡,则为随遇 平衡。
以刚性小球在不同曲面上的平衡状态为例,小球在凹面 的最低位置为稳定平衡,在凸面的最高位置为不稳定平衡, 在水平面上为随遇平衡。在一般情况下,平衡的性质可随物 体的偏移方向而异。如小球在双曲抛物面中点,其平衡状态 在一个方向是稳定的,而在其它方向则是不稳定的。在桥梁 结构中,总是要求其保持稳定平衡,也即沿各个方向都是稳 定的。随遇平衡可认为是稳定与不稳定的过渡状态,也属于 不稳定的范畴。
结构失稳是指结构在外力增加到某一量值时,稳定性平 衡状态开始丧失,稍有扰动,结构变形迅速增大,使结构失 去正常工作能力的现象。研究稳定可以从小范围内观察,即 在邻近原始状态的微小区域内进行研究。为揭示失稳的真谛, 也可从大范围内进行研究。前者以小位移理论为基础,而后 者建立在大位移非线性理论的基础上。引出了研究结构稳定 问题的两种形式:
第十二章 大跨度桥梁的稳定理论
12.1 概 述 12.2 第一类弹性及弹塑性稳定分析 12.3 拱桥稳定分析和非保向力效应 12.4 材料非线性问题 12.5 桥梁结构的极限承载力及其全 过程分析 12.6 小结
12.1 概述
12.1.1 稳定理论的发展历程
稳定问题是力学中一个重要分支,是桥梁工 程中经常遇到的问题,与强度问题有着同等重要的 意义。随着桥梁跨径的不断增大,桥塔高耸化、箱 梁薄壁化以及高强材料的应用,结构整体和局部的 刚度下降,使得稳定问题显得比以往更为重要。
静力平衡法是从平衡状态来研究压杆屈曲特征的,即研 究载荷达到多大时,弹性系统可以发生不同的平衡状态,其 实质是求解弹性系统的平衡路径(曲线)的分支点所对应的载 荷值(临界载荷)。能量法则是求弹性系统的总势能不再是正 定时的载荷值。缺陷法认为:完善而无缺陷的理想中心受压 直杆是不存在的。由于缺陷的影响,杆件开始受力时即产生 弯曲变形,其值要视缺陷程度而定。在一般条件下缺陷总是 很小的,弯曲变形并不显著,只是当荷载接近完善系统的临 界值时,变形才迅速增至很大,由此确定其失稳条件。振动 法以动力学的观点来研究压杆稳定问题。当压杆在给定的压 力下,受到一定的初始扰动之后,必将产生自由振动,如果 振动随时间的增加是收敛的,则压杆是稳定的。
桥梁结构的失稳现象表现为结构的整体失稳或局部 失稳。局部失稳是指部分子结构的失稳或个别构件的失 稳,局部失稳常常导致整个结构体系的失稳。
历史上有过许多因桥梁失稳而造成事故的例子。例 如,俄罗斯的克夫达(K eвдa)敞开式桥,于1875年因上 弦压杆失稳而引起全桥破坏;加拿大的魁北克(Quebec) 桥于1907年在架设过程中由于悬臂端下弦杆的腹版翘曲 而引起严重破坏事故;苏联的莫兹尔(Mозыр)桥,于 1925年试车时由于压杆失稳而发生事故;澳大利亚墨尔 本附近的西门(West Gate)桥,于1970年在架设拼拢整 孔左右两半(截面)钢箱梁时,上翼板在跨中央失稳,导致 112m的整跨倒塌。
第一类稳定:分支点失稳问题 如图12.1(a)所示中心受压的理想直杆。当载荷P低于特
定的临界值Pcr时,如果施加微小干扰使之弯曲,卸去干扰 后杆件仍回到原始直线状态。这时,称压杆的直线平衡形式 是稳定的。以中点挠度f为横坐标,载荷P为纵坐标,如图 12.1(b)所示,则OA上任一点表示一种直线平衡状态。称 OA为原始平衡路径(Primary equilibrium path)。当P超 过Pcr时,压杆可能处于直线平衡状态,也可能处于弯曲平 衡状态。但直线平衡状态是不稳定的,稍有干扰,压杆就失 去平衡而发生弯曲至B点。曲线AB称为第二平衡路径,A点 称为分支点。这种具有分支点的平衡问题称为第一类平衡问 题。分支点A处第二路径的切线是水平的,因此在一阶无穷 小邻域内,挠度为不定值。结构分支点失稳是理想力学模型 和小位移理论的产物。
桥梁失稳事故的发生促进了桥梁稳定理论的发展。早在 1744年,欧拉(L.Eular)就提出了压杆稳定的著名公式。此 后彭加瑞(A.Poincare,1885)明确了稳定概念,并推广到流 体力学的层流稳定问题中,即稳定分支点的概念。恩格塞 (Engesser)和卡门(Karman)等根据大量中长压杆在压曲前已 超出弹性极限的事实,分别提出了切线模量理论和折算模量 理论。普兰特尔和米歇尔几乎同时发表了关于梁侧倾问题的 研究成果。近代桥梁工程中由于采用了薄壁轻型结构,又为 稳定问题提出了一系列新的实际课题。瓦格纳 (H.Wagner,1929)及符拉索夫(В.З.ВЛаCOB,1940)等人关 于薄壁杆件的弯扭失稳理论,证明其临界荷载值大大低于欧 拉理论的临界值,同时又不能用分支点的概念来解释。因而 引入了极值点失稳的观点以及跳跃现象的稳定理论。随着科 学技术的发展,稳定理论与非线性理论的联系越来越密不可 分。研究表明,只有通过对结构几何非线性关系以及材料非 线性本构关系的研究,稳定:极值点失稳问题 一般结构体系并不存在分支点,这样就不能以平衡形式
发生分支现象来定义失稳特征。但是,在结构失稳过程中, 其荷载、变形曲线常具有极值点,如图12.1(b)所示。在OA 段内,结构始终处在弯曲平衡状态,更大可能是出现部分塑 性变形。当荷载达到极大值Pcr时,即使外力不再增加,结 构位移也可能急速增大,结构呈不稳定现象,这就是第二类 稳定:极值点失稳问题。
相关主题