第二类曲线积分的计算第二类曲线积分的计算作者:钟家伟 指导老师:张伟伟摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。
关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分1 引言本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。
1.1 第二类曲线积分的概念介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。
1.2第二类曲线积分的计算方法介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。
2.1第二类曲线积分的物理学背景力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功一质点受变力()y x F ,的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F ,所做功W .大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F所做功为 W =AB F ⋅. 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ∆.则分割},,.....,,{110n n A A A A T -=的细度为}{max 1i ni S T ∆=≤≤.设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P),(),(+=由于),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方向上的投影分别为11---=∆-=∆i i i i i i y y y x x x 与.记i i M M L 1-=),(i i y x ∆∆从而力()y x F ,在小曲线段i i M M 1-上所作的功i W ⋅≈),(i F ηξ i i M M L 1- =()i i P ηξ,i x ∆+()i i Q ηξ,i y ∆其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F ,沿L 所作的功可近似等于 i W =∑=n i i W 1i ni i i i n i i i y s Q x S P ∆+∆≈∑∑==11),(),(ηη当0→T 时,右端积分和式的极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中A =n MB M =,0.记各个小弧段i i M M 1-弧长为i s ∆,分割T 的细度为}{max 1i ni S T ∆=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记11,---=∆-=∆i i i i i i y y y x x x ,),,2,1(n i = .在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限∑=→∆ni iiiT xP 1),(limηξ∑=→∆+ni iiiT yQ 1),(limηξ存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为⎰+Ldy y x Q dx y x P ),(),(或 ⎰+ABdy y x Q dx y x P ),(),(也可记作⎰⎰+LLdy y x Q dx y x P ),(),( 或 ⎰⎰+ABABdy y x Q dx y x P ),(),(注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,=则上述记号可写成向量形式:⎰⋅Ls d F .(2) 倘若L 为光滑或分段光滑的空间有向连续曲线,),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有向曲线L 的第二类曲线积分,并记为dz z y x R dy z y x Q dx z y x P L),,(),,(),,(++⎰按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为⎰+=ABQdy Pdx W .第二型曲线积分的鲜明特征是曲线的方向性 .对二型曲线积分有 ⎰⎰-=BA AB,定积分是第二型曲线积分中当曲线为x 轴上的线段时的特例.可类似地考虑空间力场()),,( , ),,( , ),,(),,(z y x R z y x Q z y x P z y x =沿空间曲线AB L 所作的功. 为空间曲线AB L 上的第二型曲线积分⎰++ABdz z y x R dy z y x Q dx z y x P ),,(),,(),,(.2.1 对坐标的第二类曲线积分的概念设函数在平面P(x ,y)上的一条光滑(或分段光滑)曲线上有定义且有界,用分点(,)(0,1,2)i i i M X Y i n =将曲线L 从起点A 到B 分为n 个有向小弧的(,)i i ξη(,)LP x y dx⎰长度(,)i i i l ξη∀∈∆,作和式1(,)()niiiii iP X XX ξη-∆-∑。
记{}1max ii nl λ≤≤=∆,若极限1lim ()ni i i i P X Iλξη→∞=-∆=∑存在,且对曲线L 的分点及点 的选取方式无关,则称此极限为函数P(x,y)按从A 到B 的方向沿曲线L 对坐标x 的曲线积分,记作的曲线积分 记作1(,)lim ()nii ii LP x y dx P X λξη→∞==-∆∑⎰,其中P (x ,y )称为被积函数,L 称为被积路径,对坐标的曲线积分也称之为第二类曲线积分。
类似的,设函数Q (x ,y )在xy 平面上的一条光滑(或分段光滑)曲线L (AB )上有定义且有界。
若对于L 的任意分法和(,)i i ξη的任意取法,极限都存在且唯一,则称此极限值1lim ()ni i ii Q Y λξη→∞=-∆∑为函数Q (x ,y )按从A 到B 的方向沿曲线L 对坐标Y 的曲线积分,记作(,)L Q x y dy⎰2. 2 第二类曲线积分的参数计算法首先要弄清楚两类积分的定义,简单地说,第一类曲线积分就是201(,)lim (,)ni i ili f x y ds s λξη→==∆∑⎰第二类曲线积分就是1(,)(,)lim (,)(,)niiiiiili P x y dx Q x y dy P x Q y λξηξη→=+=∆+∆∑⎰ (1)这两种曲线积分的主要区别就在于,第一型曲线积分的积分和中是乘的i s ∆,i s ∆是一小段弧的弧长,i s ∆总是正值;而第二类曲线积分和积分和中是乘的一段弧的,x y 坐标的增量11,i i i i i i x x x y y y --∆=-∆=-,i x ∆与i y ∆是可正可负的。
当积分的路径反向时,i s ∆不变,而i x ∆,i y ∆反号,因此第一类曲线积分不变而第二类曲线积分反号,在这一性质上,第二类曲线积分与定积分是一样的。
计算曲线积分的基本方法是利用的参数方程将其转化成定积分,但两类曲线积分有些不同。
设曲线l 的参数方程为(),(),x x t t y y t αβ=⎧≤≤⎨=⎩则第一类曲线积分的计算公式为ds ===这里要注意αβ≤,即对t 的定积分中,下限比上限小时才有0dt >,也就有dt dt=,这样才有上述计算公式。
这个问题在计算中也要特别注意。
沿l 上的点由A 变到B ,即t 的下限α对应曲线积分的起点A ,他的上限β对应曲线积分的起点A ,t 的上限β对应终点B 。
在计算中总要用到曲线的参数方程,这里列出一些常用曲线的参数方程。
椭圆的参数方程为(sin ),02(cos ),x a t t t y a t t π=-⎧≤≤⎨=-⎩有些较简单的曲线可取x 或y 为参数,即可由直角坐标方程。
例如,直线y ax b =+,取可由直角坐标方程得出参数方程。
例如,直角y ax b =+,取x为参数,参数方程即为,,x x x y ax b =⎧-∞<<+∞⎨=+⎩又如,抛物线y x =,取y 为参数,参数方程为2,0,x y y y y ⎧=≤<+∞⎨=⎩例1 设l 为以(0,0),(1,0),(0,0)O A B 为顶点的三角形边界,计算(1)22()lx y ds+⎰(2)2222()()lx y dx x y dy +++⎰,沿逆时针方向。
解:(1)这是第一类曲线积分。
22222222()()()()lOAABOBx y ds x y ds x y ds x y ds+=+++++⎰⎰⎰⎰线段OA 的参数方程为,010,x x x y =⎧≤≤⎨=⎩122201()3OAx y ds x dx +==⎰⎰线段AB 的参数方程为,011,x x x y x =⎧≤≤⎨=-⎩12222022()((1))23ABx y ds x x dx +=+-=⎰⎰.线段OB 的参数方程为0,01,x y y y =⎧≤≤⎨=⎩1222013i OBx y ds y dy +==⎰⎰所以2212212(12)()3333L x y ds ++=++=⎰(2)这是第二类曲线积分。
22()(2)lxy dx x dy+++⎰2222()(2)()(2)OABOx y dx x dy x y dx x dy=+++++++⎰⎰1112220(1)(2)(1)2x dx x x dx x d x dy=++-++-+⎰⎰⎰12011(132)236x x dx =++--=⎰在这个例子中,必须注意第一类曲线积分与第二类曲线积分的不同处理方法,尤其是方向性 问题。