凝固原理与铸造技术复习题答案1、画出纯金属浇入铸型后发生的传热模型示意图,并简要说明其凝固过程的传热特点。
凝固过程的传热有如下一些特点:简单地说:一热、二迁、三传。
首先它是一个有热源的传热过程。
金属凝固时释放的潜热,可以看成是一个热源释放的热,但是金属的凝固潜热,不是在金属全域上同时释放,而只是在不断推进中的凝固前沿上释放。
即热源位置在不断地移动;另外,释放的潜热量也随着凝固进程而非线性地变化。
一热:有热源的非稳态传热过程,是第一重要的。
二迁:固相、液相间界面和金属铸型间界面,而这二个界面随着凝固进程而发生动态迁移,并使传热现象变得更加复杂。
三传:液态金属的凝固过程是一个同时包含动量传输、质量传输和热量传输的三传(导热、对流和辐射传热)耦合的三维传热物理过程。
其次,在金属凝固时存在着两个界面。
即固相、液相间界面和金属铸型间界面,而在这些界面上,通常发生极为复杂的传热现象。
2、一个直径为25cm的长圆柱形铸钢件在砂型和金属型中凝固:(l)当忽略铸件-铸型界面热阻时,它们的凝固时间各为多少?(2)当铸件-铸型的界面换热系数hi=0.0024J(cm2.s.℃)时,它们的凝固时间各为多少?计算用参数如表l -2所示,计算中假定钢水无过热度,并在一个固定的温度Tf 下凝固,同时假定铸型无限厚。
3、对于单元系而言,为什么高温时稳定的同素异性结构具有比低温时稳定的同素异性结构有较高的热焓,即H(γ -Fe)>H (α-Fe)?4、推导曲率引起的平衡温度改变的计算公式。
除压力外,表面曲率亦对平衡温度产生影响。
在凝固时,表面曲率对固相来说相当于增加了一项附加压力,这项附加压力是与界面张力相平衡的。
当任一曲面体的体积增加ΔV,面积增加ΔA时,附加压力ΔP与界面张力σ的关系为:由于曲率引起的平衡温度的改变为:5、二元合金的溶质平衡分配系数,除可以用热力学数据计算外,还可以用液相线斜率mL及结晶潜热ΔHm来计算。
试推导其计算公式。
溶质平衡分配系数k0为恒温下固相溶质浓度CS与液相溶质浓度CL达到平衡时的比值(即k0= Cs/CL)。
二元合金的溶质平衡分配系数,除可以用热力学数据计算外,还可以用液相线斜率mL及结晶潜热ΔHm来计算。
在二元合金中,设mL和mS为常数,则有:6、已知纯铜的熔点为1085℃,液态时铜的摩尔体积为8.0×10-6m3,固态时为7.1×10-6m3,当压力的变化为103MPa时,试确定纯铜熔点温度的变化。
Clausius-Claceyron方程式:=(1085+273)*(8.0-7.1)*10(-6)/(13.05*10(3)) *10(3)*10(6)=93.66K7、从最大形核功的角度,解释dAG/dr=0的意义。
当液体中出现晶核时,系统自由能的变化由两部分组成,一部分是液相和固相体积自由能差ΔGv,它是相变的驱动力,另一部分是由于出现了固-液界面,使系统增加了界面能ΔGe,它是相变的阻力。
这样,系统总的自由能变化为:因此,总的自由能将随r的变大而由小变大再变小,在晶核临界半径r*时,为极大值,与其相对应的ΔG * 即为形核功。
为此,将式(3-2)对r求导,并令d ΔG/dr=O,即可求出临界品核半径:或:由于ΔG是r的函数,dΔG/dr=0表示ΔG在晶核半径为临界晶核r*时达到最大,当晶胚尺寸小于临界晶核尺寸时其长大将导致体系自由能的增加,故这种尺寸的晶胚难以长大,最终熔化而消失,只有当晶胚尺寸大于临界晶核尺寸时才能形成稳定的晶核。
8、讨论说明下图所表述的意义。
尽管润湿角在非自发形核中有着重要作用,但用实验方法测定润湿角是困难的。
一般,润湿角愈小,夹杂界面的形核能力愈高。
过冷度ΔT愈大,晶胚尺寸愈大,其曲率半径愈大。
但在相同的过冷度下,润湿角小的晶胚,在折合成同体积的情况下,其曲率半径更大些。
它们与临界半径r*和ΔT的关系曲线的交点即为该θ角相应的形核过冷度,从图中可知θ角愈小,形核过冷度愈小,即其形核能力愈强。
上述情况必须有几个先决条件,首先是润湿角和温度无关,其次是夹杂的基底面积要大于晶胚接触所需要的面积,最后是晶胚和夹杂的接触面为平面。
9、分析讨论选择形核剂的条件。
生产中选择形核剂时还应考虑哪些因素?形核剂的条件根据界面能产生的原因,不难理解,两个相互接触的界面结构(原子排列的几何情况、原子大小,原于间距等)愈近似,它们之间的界面能就愈小。
通常用错位度(或称不匹配度)δ来表示界面上晶核原子与夹杂原子互相间的匹配情况。
当δ值很小时,过冷度ΔT与δ之间有如下关系:δ值较小的物质对形核是有效的。
但是,这种点阵匹配原理并不是完善的,特别是用它作为选择形核剂的标准还远远不够,因为它与很多事实不符,例如尽管Ag与Sn的δ值比Pt与Sn的δ值小,但Pt能作Sn的形核剂,而Ag却不能,这说明单靠点阵常数的差异还不能作为判断形核剂的唯一标准,其它的物理化学特性是不能忽视的,目前关于形核剂的选用,主要还是依靠经验。
润湿角除与界面张力有关外,还与形核剂表面粗糙度有关。
假若供形核的界面不是平面,而是曲面,则界面的曲度大小与方向(凸、凹)会影响界面的催化效果。
图3-21为在三个不同形状的界面上形成的三个晶胚,它们具有相同的曲率半径和相同的θ角,但三个晶胚的体积却不一样。
凸面上形成的晶胚体积最大,平面上次之,凹面上最小。
在铸件生产中,希望获得细小等轴晶结构的材料,为获得这种结构材料,最简单而有效的办法是采用孕育处理。
晶体结构、化学因素(两相异类原子间的结合键力)以及表面状态等对孕育剂的形核效果都起重要作用。
为充分发挥孕育剂的效果,必须保证它在液体金属中的均匀分布,防止其表面的污染(如氧化以及吸附其它有害于降低界面张力的元素)和熔化。
此外,为了保证有效地利用孕育剂,在液体金属中出现成分过冷是需要的。
促使成分过冷的有效条件是:液体中低的温度梯度、大的晶体长大速度和对于ko<1的情况下的低的溶质分配系数。
在铸型或锭模中,加强液体金属的对流以造成枝晶的熔断、游离(如电磁搅拌),可以获得大量的细小晶体,它们的表面纯净,没有降低润湿性的氧化膜,有利于晶体生长,其所起的作用和有效的孕育剂是一样的。
为了避免孕育剂的表面污染,在选择孕育剂时,考虑到通过化学反应的产物作为非自发核心是非常必要的。
必须指出的是,非自发形核的过冷度将随溶液冷速的增加而加大,在溶液内存在着形核能力不同的多种物质时,如果溶液达到其能力所允许的特定过冷度,它们中间的多种形核物质可能同时达到其对晶核的催化能力,这样,非自发形核的晶核尺寸将是多种多样的。
这说明具有一定形核能力的夹杂颗粒,其形核行为与冷却速度有关。
10、用平面图表示,为什么在晶体长大时,快速长大的晶体平面会消失,而留下长大速度较慢的平面?由于不同晶面族上原子密度和晶面间距的不同,故液相原子向上堆砌的能力也各不相同。
因此在相同的过冷度下,各族晶面的生长速度也必然不同。
一般而言,液相原子比较容易向排列松散的晶面上堆砌,因而在相同的过冷度下,松散面的生长速度比密排面的生长速度大。
这样生长的结果,快速生长的松散面逐渐隐没,晶体表面逐渐为密排面所覆盖。
因此快速长大的晶体平面会消失,而留下长大速度较慢的平面。
如图3-1111、试述在什么情况下,小晶面长大方式的晶体会长成树枝晶组织?什么情况下又会长成漏斗形晶体?树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).晶核一旦形成之后,为使其继续长大,液相原子必须向固-液界面上附着。
因此,晶体的进一步长大,受着原子向固-液界面附着的动力学条件的影响。
晶体长大的形貌,主要取决于固-液界面原子尺度的特殊结构,这种结构与固、液两相在晶体结构及结合键力上的差别密切相关。
通常,可以把材料在结晶形貌上分成两大类。
一类为非小晶面长大,金属和一些特殊的有机化合物属于此类,它们的晶体具有宏观上光滑的固一液界面,且显示不出任何结晶面的特征,原子在向固一渡界面上附着时是各向同性的。
原子的供给取决于热流及溶质原子的扩散场,哪个方向传热、传质快,哪个方向就长大得快。
与此同时,由于界面能的各向异性,这类晶体在长大方向上有择优取向的倾向,表现在树枝晶的主干有一定的结晶取向。
另一类为小晶面长大,类金属及金属间化合物、矿物、一些有机物晶体属于此类,它们的晶体具有宏观上锯齿状的固-液界面,并显示出结晶面的特征,图3-22 b为这类晶体的外形。
这种晶体的不同晶面长大的速度是不一样的,高指数的晶面,长大时向前(垂直于晶面方向)推进的速度快,最后晶体被低指数晶面包封,从而形成有棱角的外形,究竟哪类物质属于非小晶面长大,哪类物质又是属于小晶面长大,这要取决于它们的熔化熵值,为此,必需首先要从固-液界面自由能方面进行讨论。
12、铸件在金属型中的位置选择主要有哪些设计原则?铸件在金属型中的位置直接关系到型芯和分型面的数量、液体金属的导入位置、冒口的补缩效果、排气的通畅程度以及金属型的复杂程度等。
铸件在金属型中位置的设计原则如下。
(1)浇注系统易于安放,保证金属液平稳地充满金属型,排气方便,避免金属液流卷气和氧化。
(2)铸件最厚大部位应放置在金属型的上端,便于设置冒口补缩。
如盖子或盘形铸件的厚大法兰面应向上,便于设置冒口补缩。
(3)应使金属型结构简单,型芯数量少,安装方便,定位牢固可靠。
(4)应保证便于分型取出铸件,防止铸件被拉裂或变形。
由此可见铸件在金属型中的位置决定了工艺方案的优劣,所以在确定铸件位置时,应多方比较,综合考虑,以选择最佳的位置方案。
13、金属型的铸造工艺方案是决定金属型铸件质量的最本质因素。
确定铸造工艺方案时应注意哪些因素?金属型的铸造工艺方案是决定金属型铸件质量的最本质因素。
确定铸造工艺方案时应注意以下几点。
(1)浇注系统的设计应尽可能简单,设置直浇道、横浇道等时应避免产生紊流。
近年来,为了防止浇注时金属液流动过程中形成紊流,可采用倾转式浇注(图2-1b)。
(2)铸件应力求避免壁厚的突然变化,厚壁与薄壁之间应平滑过渡。
因为壁厚的剧烈变化易引起金属液流动时形成紊流及凝固时产生热节,增加卷气或缩孔、缩松之类的缺陷。
(3)为保证金属液完全充满型腔,对于易形成密闭空间的部位(如拐角、凹坑等〕应设置排气塞或排气道来强化排气。