当前位置:文档之家› 材料科学工程基础总结

材料科学工程基础总结

材料科学工程基础总结材料科学工程基础总结1、材料科学与工程的四个基本要素:答:1)、使用性能是材料在使用状态下表现出的行为,是材料研究的出发点和目标,主要决定于材料的力学、物理和化学等性质;2)、材料的性质是材料对热、光、机械载荷等的反应,主要决定于材料的组成与结构;3)、化学成分和4)组织结构是影响其性质的直接因素;通过合成制备过程,可改变材料的组织结构而影响其性质;2、材料科学与工程定义:答:关于材料组成、结构、制备工艺与其性能及使用过程间相互关系的知识开发及应用的科学。

3、按材料特性?材料分为哪几类?答:金属材料、无机非金属材料、高分子材料、半导体材料。

4、金属通常分哪两大类?答:黑色金属材料和有色金属材料。

5、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。

答:简单金属完全为金属键,过渡族金属为金属键和共价键的混合,但以金属键为主;陶瓷材料是由一种或多种金属同非金属(通常为氧)相结合的化合物,其主要为离子键,也有一定成分的共价键;高分子材料,大分子内的原子之间结合为共价键,而大分子与大分子之间的结合为物理键。

复合材料是由二种或二种以上的材料组合而成的物质,因而其结合链非常复杂,不能一概而论。

6、在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?答:同一周期元素具有相同原子核外电子层数,从左到右,核电荷增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,从上向下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增强,非金属性降低。

7、原子中一个电子的空间位置和能量可用哪四个量子数来决定?答:主量子数n、轨道角动量量子数li、磁量子数mi和自旋角动量量子数Si。

8、影响配位数的因素。

答:共价键数,与结合键类型有关,影响材料的密度。

原子的有效堆积(离子和金属键合)异种离子接近放出能量,不引起离子间的强相互推斥力下,近邻异号离子尽可能多,离子晶体结构更稳定。

离子化合物配位数较高,常为6。

正、负离子的配位数主要取决于正、负离子的半径比,只有当正、负离子相互接触时,离子晶体的结构才稳定。

配位数一定时,正、负离子的半径比有个下限值。

9、比较键能大小和各种结合键的主要特点。

答:化学键能>物理键能,共价键能≥离子键能>金属键能>氢键能>范氏键能;共价键中:叁键键能>双键键能>单键键能。

特点:金属键,由金属正离子和自由电子,靠库仑引力结合,电子的共有化,无饱和性,无方向性;离子键以离子为结合单元,无饱和性,无方向性;共价键共用电子对,有饱和性和方向性;范德华力,原子或分子间偶极作用,无方向性,无饱和性;氢键,分子间作用力,氢桥,有方向性和饱和性。

10、简述结合键类型及键能大小对材料的熔点密度导电性导热性弹性模量和塑性有何影响。

答:熔点:熔点高低代表材料的稳定性程度。

加热时,当热振动能足以破坏相邻原子间的稳定结合时,材料发生熔化。

结合键类型和结合(键)能大小决定材料熔点的高低。

密度:金属键没有方向性,金属原子总是趋于密集排列,故金属密度高;陶瓷材料为共价键和离子键的结合,其密度较低;聚合物多为二次键结合,其组成原子质量较小,聚合物密度最低。

导电和导热性:金属键由金属正离子和自由电子,靠库仑引力结合,价电子能在晶体内自由运动,使金属具有良好导电性;不仅正离子振动传递热能,电子运动也能传递热能,使金属具有良好导热性;而非金属键结合的陶瓷和聚合物在固态下不导电,导热性小。

模量:结合键能越大材料的拉伸或压缩模量越大。

塑性:金属键无饱和性又无方向性,金属受力变形,可改变原子之间的相互位置,金属键不被破坏,使金属有良好延展性;共价键键能高,有方向性和有饱和性,结构稳定,改变原子间的相对位置很困难,共价键结合的材料塑性变形能力差,硬而脆。

11、空间点阵。

答:空间点阵:一系列在三维空间按周期性排列的几何点称为一个空间点阵;晶面指数:晶面在三个晶轴上的截距倒数之比;致密度:晶胞中的原子所占的体积与该晶胞所占体积之比。

12、液晶及其液晶的分类:答:液晶:某些结晶物质受热熔融或被溶剂溶解之后,失去固态物质的刚性,变成具有流动性的液态物质,但结构上保存一维或二维有序排列,物理性质上呈现各向异性,兼有部分晶体和液体性质的过渡中间态物质。

分类:按晶相的形成分为热致液晶和溶致液晶;按分子排列的有序性分为:丝状相,螺旋状相和层状相。

13、影响形成间隙型固溶体的因素:答:1)、晶格结构(溶质原子半径小,溶剂原子晶格间隙大);2)、间隙离子进入后,需形成空位或反电荷离子以置换方式,生成置换型固溶体,保持电中性。

3)、组分偏离化学式的化合物(含变价离子)。

实质:由金属的高氧化态和低氧化态形成的固溶体。

14、有序合金的原子排列有何特点?这种排列和结合键有什么关系?答:特点:原子分别占据晶胞中不同结构位置。

15、为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?答:这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。

熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。

一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解故不能无限互溶,只能有限熔解。

16、弗仑克尔缺陷:答:等量的间隙正离子和正离子空位。

17、点缺陷对晶体性质的影响:答:点缺陷存在和空位运动,造成小区域的晶格畸变。

五点:使材料电阻增加,定向流动的电子在点缺陷处受到非平衡力,使电子在传导中的散射增加;2)加快原子的扩散迁移,空位的迁移伴随原子的反向运动3)使材料体积增加,密度下降4)比热容增大,附加空位生成焓5)改变材料力学性能,间隙原子和异类原子的存在,增加位错运动阻力,使强度提高,塑性下降。

18、位错的运动及其特点:答:1)位错的滑移:位错处原子能量高,不稳定,切应力下其原子的位移量更大。

将位错推进一个原子距离。

移动方向平行滑移面,和位错线垂直;切应力继续作用,位错逐渐移到晶体表面,产生一个原子距离的台阶。

位错滑移使晶体产生塑性变形,比完整单晶两个相邻原子面整体相对移动更容易;晶体实际强度(实际晶体)比理论强度(无位错晶体)低得多。

位错滑移与外力有关;2)位错的爬(攀)移:与空位和间隙原子有关,位错在垂直滑移面方向的运动。

原子从半原子面下端离开,半原子面缩短,正爬(攀)移,位错线上移;原子扩散至位错附近,加到半原子面上,半原子面伸长,负爬(攀)移。

位错爬(攀)移是通过原子的扩散实现;19、体积(晶格)扩散的微观机制类型:答:间隙扩散与空位扩散。

20、比较下列各因素对扩散系数的影响,并简要说明原因。

1)金属键晶体的扩散系数与共价键晶体或离子键晶体的扩散系数:键能越强,原子间的结合键力越强,熔点也高,激活能越大,扩散系数越小。

共价键晶体和离子键晶体的扩散系数置换型固溶体的扩散系数。

置换型固溶体的扩散,首先要形成空位,激活能较大。

3)铁的自扩散系数a(Fe)与r(Fe):912℃铁的自扩散系数Da(Fe)/Dr(Fe)=280。

21、固体表面结构的主要特点?答:排列状态:趋向于表面能降低1)原子密堆(表面能的本质是表面原子的不饱和键)。

2)离子极化或位移;3)杂质原子的迁移,自由表面,使表面能降低;4)吸附层;5)受外界影响,表面质点排列较不规整,缺陷较内部多;第二是离子极化或位移:1)理想表面;键不饱和,不均匀力场;正离子被拉向内部;2)负离子受正离子的作用,诱导出偶极子;3)离子重排,形成偶极矩。

22、固体表面对外来原子发生哪两种吸附?并比较其主要特征?答:发生化学吸附和物理吸附;化学吸附:单分子层吸附,放热>80~400kJ/mol有选择性。

化学吸附源于不饱和键。

物理吸附:单或多分子层吸附(吸附层厚),无选择性,放热材料科学与工程基础学习心得《材料科学与工程基础》课程研修体会《材料科学与工程基础》是材料专业首要的专业基础课,是学生全面进入专业领域、从基础课到专业课的过渡课程。

它概念多、学科知识面宽、应用基础理论广,既包括基本原理,又涉及工程实践应用,无论是学生学起来,还是教师教起来都相当有难度。

通过学习顾宜教授及其教学团队讲授的《材料科学与工程基础》课程,使我更加深入的了解本课程的教课规律,熟悉了本课程的重点难点知识,对《材料科学与工程基础》油了更深入的了解。

要在有限的学时内使学生能够掌握基本内容,讲授内容要有详有略,有舍有取,对基本概念应讲透,基本原理和方法应精讲,做到重点突出,详略得体。

在本课程中,根据材料成型及控制工程(铸造专业)的教学计划和《材料科学与工程基础》教学大纲,重点讲授晶体学基础、晶体缺陷、相图、扩散及相变等基本知识,对其它内容,例如凝固、固体材料的结构、材料的表面与界面、金属材料的变形与再结晶、材料的变形、高分子材料的结构、固体材料的电子结构与物理性能、材料概论等知识,采用引导自学或简单介绍的方法,让学生在很短的时间内了解相关知识。

部分内容在材料物理专业的其它课程中会做详细讲解。

由于学时不断减少,不能面面俱到,要做到重点突出,兼顾各知识点。

《材料科学基础》各部分内容之间是紧密联系的,因此在上课之初一定要把该门课程的各部分内容让学生有一个整体认识,并说明各部分内容之间的相互关联。

在教学过程中,从一个教学内容转到下一个教学内容时,一定要做好两部分内容之间的衔接工作,因为它起到贯通内容完整性的重要作用。

例如在讲解晶体缺陷时,一定要求学生对晶体结构知识全面掌握,而在讲解扩散与相变时,要求学生对晶体缺陷知识熟练掌握。

在授课进度安排上,一定要保证前一部分内容已经熟练掌握,才能安排后续相关内容的学习。

为了解决这个《材料科学与工程基础》课程内容多,概念多,理论性强的问题,除了授课时要突出重点,讲清难点,课外多做习题外,更新教学手段,采取有效的教学方法,促进学生理解与记忆,帮助学生学习,将是重要的途径。

以往课程教学手段主要是采用课堂面授方式,利用粉笔加黑板的传统教学模式。

这种教学方法不能很好地把理论运用到实际中,生动丰富地讲透理论知识,学生学习的难度较大,教学难以达到应有的效果,教学面也很窄。

采用多媒体教学的方式,形象生动的对《材料科学与工程基础》的知识进行学习和讲授,此外给学生讲授一些自己在博士期间参与的项目或者课题,并用本课程的哪些知识进行了解决和做出的成果,提高学生学习本课程的兴趣和提高感染力。

现代教育重视学生能力的培养,即注重培养学生获取知识、运用知识、创新知识的能力。

在《材料科学与工程基础》教学中,首先要培养学生获取知识的能力。

相关主题