当前位置:文档之家› 第五章 二次型 习题答案

第五章 二次型 习题答案

第五章 二次型本章课后习题全解习 题(P232-P234)1.(Ⅰ)用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果: 1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; (Ⅱ)把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作的非退化线性替换. 解 (Ⅰ)1)设()323121321224,,x x x x x x x x x f ++-=,此二次型不含有平方项,故作非退化线性替换11221233,,,x y y x y y x y =+⎧⎪=-⎨⎪=⎩ 并配方,得到()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-= 2221332(2)4y y y y =--++, 再作非退化线性替换11322332,,.z y y z y z y =-⎧⎪=⎨⎪=⎩ 即 113223311,22,.y z z y z y z ⎧=+⎪⎪=⎨⎪=⎪⎩于是,原二次型的标准形为()2322213214,,z z z x x x f ++-=, 并且,所经过的非退化线性替换为112321233311,2211,22,x z z z x z z z x z ⎧=++⎪⎪⎪=-+⎨⎪=⎪⎪⎩写成矩阵形式即为=X CY ,其中1112211122001⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪⎪⎝⎭C .根据矩阵验算,得11111022********1111010110402211110001001122⎛⎫⎛⎫ ⎪ ⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪'=---= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭C AC .2)设123(,,)f x x x =23322221214422x x x x x x x ++++. 解法1 配方法.对原二次型进行配方,得()222222123112222331223,,(2)(44)()(2)f x x x x x x x x x x x x x x x =++++=+++,于是,令11222333,2,,y x x y x x y x =+⎧⎪=+⎨⎪=⎩ 则原二次型的标准形为2212312(,,)f x x x y y =+, 且所作的非退化线性替换为1123223332,2,.x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩ 相应的替换矩阵为112012001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭C ,验算,得100110112100110122012010221024001000-⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪'=--= ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭C AC .解法2 矩阵的合同变换法(见本章教材内容全解之标准形的求法).对⎛⎫⎪ ⎪⎝⎭A E 施行初等变换,得110100100122012010024024000100110112010010012001001001⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎛⎫⎛⎫=→→= ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪--⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E C Λ. 则原二次型的标准形为2212312(,,)f x x x y y '==+Y Y Λ, 所作的非退化线性替换为=X CY ,即1123223332,2,.x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩ 矩阵验证同解法1.(Ⅱ)1)根据(Ⅰ)已求得二次型()323121321224,,x x x x x x x x x f ++-=的标准形为()2322213214,,z z z x x x f ++-=, 且非退化线性替换为112321233311,2211,22,x z z z x z z z x z ⎧=++⎪⎪⎪=-+⎨⎪=⎪⎪⎩①在实数域上,再作非退化线性替换132231,1,2,z w z w z w =⎧⎪⎪=⎨⎪=⎪⎩ 则有1123212331111,222111,222,x w w w x w w w x w ⎧=++⎪⎪⎪=-+⎨⎪=⎪⎪⎩可得原二次型的规范形为222123123(,,)f x x x w w w =+-. ②在复数域上,再作非退化线性替换112233,1,2,z iw z w z w =⎧⎪⎪=⎨⎪=⎪⎩ 则有112321233311,22211,222,i x w w w i x w w w x w ⎧=++⎪⎪⎪=-+⎨⎪=⎪⎪⎩可得原二次型的规范形为222123123(,,)f x x x w w w =++. 2)根据(Ⅰ)已求得二次型()321,,x x x f 23322221214422x x x x x x x ++++=的标准形为 ()2212312,,f x x x y y =+, 且非退化线性替换为1123223332,2,.x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩ 此时,该非退化线性替换已将原二次型化为实数域上的规范形和复数域上的规范形()2212312,,f x x x y y =+. 『特别提醒』这个题目使用了化二次型为标准形的两种常用的方法:配方法和矩阵合同变换法.3.证明:⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21 与 ⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21 合同,其中12n i i i 是1,2,,n 的一个排列.证法1 设两个关于12,,,n x x x 和12,,,n y y y 的n 元二次型如下:222121122(,,,)n n n f x x x x x x λλλ=+++ ,122221212(,,,)n n i i i ng y y y y y y λλλ=+++ . 那么12(,,,)n f x x x 和12(,,,)n g y y y 的矩阵即为题目中的两个矩阵.构造非退化的线性替换1212,,,n i i ni y x y x y x =⎧⎪=⎪⎨⎪⎪=⎩ 则这个线性替换可以将二次型12(,,,)n g y y y 可化成12(,,,)n f x x x .由于经过一次非退化的线性替换,新旧的两个二次型的矩阵是合同的,故题目中的两个矩阵是合同的.证法2 设12n λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭A 与 12n i ii λλλ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭B . 对A 交换,i j 两行,再交换,i j 两列,相当于对A 左乘和右乘初等矩阵(,)(,)i j i j '=P P 和(,)i j P ,而(,)(,)i j i j 'P AP即为将A 中的i λ和j λ交换位置得到的对角矩阵.于是,总可以通过这样的一系列的对调变换,将A 的主对角线上的元素12,,,n λλλ 变成12,,,n i i i λλλ ,这也相当于存在一系列初等矩阵12,,,s Q Q Q ,使得2112ss '''= Q Q Q AQ Q Q B , 令12s = Q Q Q Q ,则有'=Q AQ B ,即A 与B 合同.『方法技巧』证法1利用经过非退化线性替换前后两个二次型的矩阵是合同的这一性质;证法2利用了矩阵的合同变换,直接进行了证明. 7.判断下列二次型是否正定:1)2332223121217160130481299x x x x x x x x x +-++-; 2)23322231212128224810x x x x x x x x x +-+++; 3)jnj i ini ixx x∑∑≤<≤=+112;『解题提示』利于教材中的定理7进行判别,即利用二次型的矩阵的顺序主子式进行判别. 解 1)该二次型的矩阵为99624613030243071-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,由于顺序主子式1990P =>, 29960,6130P -=>- 37558740P ==>A , 故原二次型为正定二次型.2)该二次型的矩阵为10412421412141⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,由于A 的行列式1041242143588012141=-=-<-A , 故原二次型非正定.3)设二次型的矩阵为1111a a a a a a a a a a a a ⎛⎫⎪⎪⎪ ⎪⎪ ⎪⎝⎭,其中12a =.由于A 的任意k 阶顺序主子式k P 所对应的矩阵k A 与A 为同类型的对称矩阵,且11[(1)1](1)(1)02kk k k P k a a k -⎛⎫==-+-=+> ⎪⎝⎭A ,1,2,,k n = ,故原二次型为正定二次型.8.t 取什么值时,下列二次型是正定的:1)3231212322214225x x x x x tx x x x +-+++; 2)32312123222161024x x x x x tx x x x +++++.解 1)该二次型的矩阵为1112125t t -⎛⎫⎪= ⎪ ⎪-⎝⎭A ,其各阶顺序主子式为110P =>,22111tP t t ==-,()311||1245125t P t t t -===-+-A . 当顺序主子式全大于零,即210,(45)0t t t ⎧->⎨-+>⎩时,原二次型是正定的.解上面不等式组,可得054<<-t . 于是,当054<<-t 时,原二次型是正定的. 2)该二次型的矩阵为1543531t t ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,其各阶顺序主子式为110P =>,22144tP t t ==-,23154330105531t P t t t ===-+-A , 当顺序主子式全大于零,即2240,301050t t t ⎧->⎪⎨-+->⎪⎩时,原二次型是正定的.但此不等式组无解,于是,不存在t 值使原二次型为正定.『方法技巧』对于具体的二次型,利用其矩阵的顺序主子式判别二次型是否正定是比较常用的.10.设A 是实对称矩阵,证明:当实数t 充分大之后,t +E A 是正定矩阵.证明 设A 是一个n 级实对称矩阵,12(),(),,()n P t P t P t 是t +E A 的全部顺序主子式.显然t +E A 也是一个实对称矩阵,且其顺序主子式12(),(),,()n P t P t P t 都是首项系数为1的实系数多项式.由实函数的理论可知,存在充分大的M ,使得当t M >时,12(),(),,()n P t P t P t 全大于零.于是,当实数t 充分大之后,t +E A 是正定矩阵.11.证明:如果A 是正定矩阵,那么1-A 也是正定矩阵.证法1 由于A 是正定矩阵,从而A 是对称矩阵,则111()()---''==A A A,即1-A 也是实对称矩阵.又因为A 是正定矩阵,故'X AX 是正定二次型,作非退化线性替换Y A X 1-=,得到11111()()()-----''''===X AX A Y A A Y Y A AA Y Y A Y ,根据非退化线性替换不改变二次型的正定性,所以1-'Y A Y 为正定二次型,从而1-A 是正定矩阵.证法2 由于A 是正定矩阵,从而A 是对称矩阵,则111()()---''==A A A,即1-A 也是实对称矩阵.又因为A 是正定矩阵,故A 与单位矩阵E 是合同的,即存在可逆矩阵C ,使得''==A C EC C C ,从而11111111()()()(())()--------''''''====A C C C C C C C E C ,即A 也与单位矩阵E 是合同的.于是1-A 也是正定矩阵.『方法技巧』证法1利用了正定二次型与正定矩阵的对应,以及非退化线性替换不改变矩阵的正定性;证法2根据正定矩阵的等价条件直接进行了证明.13.如果,A B 都是n 级正定矩阵,证明:+A B 也是正定矩阵.证明 因为,A B 为正定矩阵,故,A B 都是n 级实对称矩阵,从而+A B 也是n 级实对称矩阵.设12(,,,)n x x x '= X 是任意一个非零列向量,根据,A B 是正定的可知()0'''+=+>X A B X X AX X BX ,故+A B 也是正定矩阵.『方法技巧』对正定矩阵和正定二次型的定义的考查.。

相关主题