高中物理功能专题练习中等难度一、单选题(本大题共1小题,共4.0分)1.“飞流直下三千尺,疑是银河落九天”是唐代诗人李白描写庐山瀑布的佳句.瀑布中的水从高处落下的过程中( )A. 重力势能增加B. 重力势能减少C. 重力对水做的功大于水重力势能的改变量D. 重力对水做的功小于水重力势能的改变量二、多选题(本大题共3小题,共12.0分)2.关于功的正负,下列叙述中正确的是( )A. 正功表示功的方向与物体运动方向相同,负功为相反B. 正功大于负功C. 正功表示力和位移两者之间夹角小于90∘,负功表示力和位移两者之间夹角大于90∘D. 正功表示做功的力为动力,负功表示做功的力为阻力3.物体从某一高度处自由下落,落到直立于地面的轻弹簧上,在A点物体开始与弹簧接触,到B点物体的速度为零,然后被弹回,下列说法中正确的是( )A. 物体从A下落到B的过程中,弹性势能不断增大B. 物体从A下落到B的过程中,重力势能不断减小C. 物体从A下落到B以及从B上升到A的过程中,动能都是先变小后变大D. 物体在B点的速度为零,处于平衡状态4.如图所示,竖直光滑杆固定不动,套在杆上的弹簧下端固定,将套在杆上的滑块向下压缩弹簧至离地高度ℎ=0.1m处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量到滑块的速度和离地高度h并作出滑块的E k−ℎ图象,其中高度从0.2m上升到0.35m范围内图象为直线,其余为曲线,以地面为零势能面,取g=10m/s2,由图象可知( )A. 小滑块的质量为0.2kgB. 轻弹簧原长为0.1mC. 弹簧最大弹性势能为0.32JD. 小滑块的重力势能与弹簧的弹性势能总和最小为0.38J三、填空题(本大题共2小题,共8.0分)5.如图,倾角为θ的斜面上一物体,竖直向上的恒力F通过滑轮把物体拉着沿斜面向上移动了S的位移,则此过程拉了F做功W=______ .6.质量m=5×103kg的汽车以P=6×104W的额定功率沿平直公路行驶,某时刻汽车的速度大小为v=10m/s,设汽车受恒定阻力f=2.5×103N.则v=10m/s时汽车的加速度a的大小为______ m/s2;汽车能达到的最大速度v m大小为______ m/s.四、计算题(本大题共1小题,共10.0分)7.如图所示,长为4m的水平轨道AB,与半径为R=0.5m的竖直的半圆弧轨道BC在B处相连接,有−质量为2kg的滑块(可视为质点),在水平向右、大小为14N的恒力F作用下,从A点由静止开始运动到B点,滑块与AB间的动摩擦因数为μ=0.25,BC间粗糙,取g=10m/s2.求:(1)滑块到达B处时的速度大小;(2)若到达B点时撤去力F,滑块沿半圆弧轨道内侧上滑,并洽好能到达最高点C,则滑块在半圆弧轨道上克服摩擦力所做的功是多少?五、简答题(本大题共3小题,共24.0分)8.如图所示,水平面与倾角为θ=37∘的斜面在B处平滑连接(图中未画出),斜面足够长,一质量为m=1kg的小物块在水平面上从A处以初速度v0=20m/s水平向右运动,AB间距离d=30m.己知物块与水平面和斜面的动摩擦因数均为μ=0.5,重力加速变g=10m/s2,sin37∘=06,cos37∘=0.8.求:(1)物块在斜面上运动离B点的最大距离;(2)物块最终静止位置与A点距离.9.如图(a),O、N、P为直角三角形的三个顶点,∠NOP=37∘,OP中点处固定一电量为q1=2.0×10−8C的正点电荷,M点固定一轻质弹簧.MN是一光滑绝缘杆,其中ON长为a=1m,杆上穿有一带正电的小球(可视为点电荷),将弹簧压缩到O点由静止释放,小球离开弹簧后到达N点的速度为零.沿ON方向建立坐标轴(取O点处x=0),图(b)中Ⅰ和Ⅱ图线分别为小球的重力势能和电势能随位置坐标x变化的图象,其中E0=1.24×10−3J,E1=1.92×10−3J,E2=6.2×10−4J.(静电力恒量k=9.0×109N⋅m2/C2,取sin37∘=0.6,cos37∘=0.8,重力加速度g=10m/s2)(1)求电势能为E1时小球的位置坐标x1和小球的质量m;(2)已知在x1处时小球与杆间的弹力恰好为零,求小球的电量q2;(3)求小球释放瞬间弹簧的弹性势能E p.10.如图所示,光滑水平面上有三个滑块A、B、C,其质量分别为m,2m,3m,其中B,C两滑块用一轻质弹簧连接.某时刻给滑块A向右的初速度v0,使其在水平面上的速度反弹,匀速运动,一段时间后与滑块B发生碰撞,碰后滑块A立即以v=v05求:(1)发生碰撞过程中系统机械能的损失为多少?(2)碰后弹簧所具有的最大弹性势能?答案和解析【答案】1. B2. CD3. AB4. AD5. FS+FS sinθ6. 0.7;247. 解:(1)滑块从A到B的过程中,由动能定理有:Fx−μmgx=1mv B2即:14×4−0.25×2×10×4=12×2×v B2得:v B=6m/s(3)当滑块恰好能到达C点时,应有:mg=m v C2R滑块从B到C的过程中,由动能定理:W−mg⋅2R=12mv C2−12mv B2联立解得:W=−11(J),即克服摩擦力做功为11J.答:(1)滑块到达B处时的速度大小是6m/s.(2)滑块在半圆弧轨道上克服摩擦力所做的功是11J.8. 解:(1)当物块在斜面上速度减为零时,离B点的距离最大,设为L,整个过程中,根据动能定理得:0−12mv02=−μmgd−μmg cos37∘L−mgL sin37∘解得:L=5m,(2)因为mg sin37∘>μmg cos37∘,则物块速度减为零后不能保持静止,沿斜面下滑,最后静止在水平面上,此过程中,根据动能定理得:mgL sin37∘−μmgL cos37∘−μmgs=0−0解得:s=0.2m则物块最终静止位置与A点距离x=d−s=30−0.2=29.8m答:(1)物块在斜面上运动离B点的最大距离为5m;(2)物块最终静止位置与A点距离为29.8m.9. 解:(1)电势能为E1是最大,所以应是电荷q1对小球做负功和正功的分界点,即应该是图中M(过q1作的ON的垂线).x1=a cos37∘×12cos37∘=0.32a=0.32m,根据图象得到mgℎ=E1,m=E11=1.92×10−3=1×10−3kg(2)小球受到重力G、库仑力F,则有:k q1q2r2=mg cos37∘,其中:r=x1tan37∘=0.24a带入数据,得:q2=2.56×10−6C(3)对O到N,小球离开弹簧后到达N点的速度为零,根据能量守恒,得到mga sin37∘+E2−E0=E P带入数据解得:E p=5.38×10−3J答:(1)电势能为E1时小球的位置坐标x1为0.32m,小球的质量1×10−3kg;(2)小球的电量q2为2.56×10−6C;(3)小球释放瞬间弹簧的弹性势能E p为5.38×10−3J.10. 解:(1)AB碰撞瞬间,A,B组成系统动量守恒,规定向右为正方向有:mv0=−m v05+2mv B解得:v B=35v0碰撞过程中系统机械能的损失△E=12mv02−12m(v05)2−12⋅2m(3v05)2=325mv02(2)当弹簧具有最大弹性势能时,B,C具有共同速度,设为V BC,则根据动量守恒定律有:2mv B=(2m+3m)v BC由机械能守恒定律有:E P=1×2mv B2−1×3mv BC2解得:E P=27125mv02答:(1)发生碰撞过程中系统机械能的损失为325mv02;(2)碰后弹簧所具有的最大弹性势能为27125mv02.【解析】1. 解:根据△E P=−W G可知:瀑布中的水从高处落下的过程中重力做正功,重力势能减小,重力对水做的功等于水重力势能的改变量.故选B瀑布中的水从高处落下重力做正功,重力势能减小.本题主要考查了重力做功与重力势能的变化量的关系,难度不大,属于基础题.2. 解:A、功是标量,只有大小,没有方向,而正负表示动力做功,负号表示阻力做功,故A错误;D正确B、功的正负不表示做功的大小;故B错误;C、由W=Fx cosθ可知,正功表示力和位移两者之间夹角小于90∘,负功表示力和位移两者之间夹角大于90∘,故C正确;故选:CD功是标量,只有大小,没有方向,由W=Fx cosθ可知,做功正负的条件,正功表示动力对物体做功,负功表示阻力对物体做功.本题主要考查了对功的理解,注意功是标量,只有大小,没有方向,明确正功和负功的意义.3. 解:A、物体从A下落到B的过程中,弹簧的形变量增大,弹性势能不断增大,故A 正确;B、物体从A下落到B的过程中,高度降低,重力势能不断减小,故B正确;C、物体从A下落到B以及从B上升到A的过程中,当弹簧的弹力和重力平衡时,速度最大,动能最大,所以动能都是先变大后变小,故C错误;D、物体在B点时,速度为零,但速度为零,合力不为零,不是处于平衡状态,故D错误;故选:AB动能的大小与物体的速度有关,知道速度的变化规律可以知道动能的变化规律;重力势能与物体的高度有关,根据高度的变化来判断重力势能的变化;弹簧的弹性势能看的是弹簧形变量的大小;首先要明确物体的整个的下落过程,知道在下降的过程中各物理量之间的关系,在对动能和势能的变化作出判断,需要学生较好的掌握基本知识.4. 解:A、在从0.2m上升到0.35m范围内,△E k=△E P=mg△ℎ,图线的斜率绝对值为:k=△E k△ℎ=0.30.35−0.2=2N=mg,则m=0.2kg,故A正确;B、在E k−ℎ图象中,图线的斜率表示滑块所受的合外力,由于高度从0.2m上升到0.35m范围内图象为直线,其余部分为曲线,说明滑块从0.2m上升到0.35m范围内所受作用力为恒力,所示从ℎ=0.2m,滑块与弹簧分离,弹簧的原长的0.2m.故B错误;C、根据能的转化与守恒可知,当滑块上升至最大高度时,增加的重力势能即为弹簧最大弹性势能,所以E pm=mg△ℎ=0.2×10×(0.35−0.1)=0.5J,故C错误;D、由图可知,当ℎ=0.18m时的动能最大,在滑块整个运动过程中,系统的动能、重力势能和弹性势能之间相互转化,因此动能最大时,滑块的重力势能与弹簧的弹性势能总和最小,根据能的转化和守恒可知,E Pmin=E−E km=E pm+mgℎ−E km=0.5+0.2×10×0.1−0.32=0.38J,故D正确;故选:AD根据E k−ℎ图象的斜率表示滑块所受的合外力,高度从0.2m上升到0.35m范围内图象为直线,其余部分为曲线,结合能量守恒定律求解.本题考查了能量守恒定律和图象的理解与应用问题,根据该图象的形状得出滑块从0.2m 上升到0.35m范围内所受作用力为恒力,说明物体不再受到弹簧的弹力的作用是解题的关键.5. 解:由图可知,F通过绳子对滑轮产生了两个拉力的作用,一个是沿斜面上的拉力,另一个是竖直向上的拉力;两拉力所做的总功为:FS+FS cos(90∘−θ)=FS+FS sinθ;故答案为:FS+FS sinθ对滑轮分析,根据滑轮受力情况,利用功的公式可求得F所做的功.本题通过力F的实际效果进行分析求解,也可以直接分析拉力F的作用,要注意明确F 的位移与物体位移的关系.6. 解:由P=Fv可知,牵引力:F=Pv =6×10410=6000N,由牛顿第二定律得:F−f=ma,代入数据解得:a=0.7m/s2,当汽车匀速运动时速度最大,由平衡条件得:F′=f=2500N,由P=Fv可知,最大速度:v max=PF′=6×1042500=24m/s;故答案为:0.7;24.应用功率公式P=Fv的变形公式求出汽车的牵引力,然后应用牛顿第二定律求出加速度;汽车匀速运动是速度最大,应用平衡条件求出牵引力,然后由功率公式求出最大速度.本题考查了功率公式P=Fv的应用,分析清楚汽车的运动过程,应用P=Fv、平衡条件、牛顿第二定律可以解题.7. (1)对滑块从A到B的过程作为研究的过程,运用动能定理求出滑块到达B处时的速度大小.(2)滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C,知在最高点C所受的弹力为零,根据牛顿第二定律求出临界的速度,根据动能定理求出滑块在半圆轨道上克服摩擦力所做的功.分析清楚滑块的运动过程,知道涉及力在空间的效果,运用动能定理求出速度是常用的方法.还要明确最高点的临界条件:重力等于向心力.8. (1)当物块在斜面上速度减为零时,离B点的距离最大,整个过程中,根据动能定理列式即可求解;(2)因为mg sin37∘>μmg cos37∘,则物块速度减为零后不能保持静止,沿斜面下滑,最后静止在水平面上,此过程中,根据动能定理列式求解即可.本题主要考查了动能定理的直接应用,要求同学们能正确分析物块的受力情况,特别注意物块速度减为零后不能保持静止,而要沿斜面下滑,难度适中.9. (1)判断出x1的位置,利用E1=mgℎ即可求的质量;(2)根据受力分析利用垂直于斜面方向合力为零即可求的电荷量;(3)根据能量守恒即可求得.分析磁场的分布情况及小球的运动情况,通过电场力做功来判断电势能的变化从而判断出图象,再根据平衡条件和动能定理进行处理.10. (1)AB碰撞瞬间,A,B组成系统动量守恒,根据动量守恒定律求出碰撞后B的速度,再根据能量守恒定律求出发生碰撞过程中系统机械能的损失量;(2)当弹簧具有最大弹性势能时,B,C具有共同速度,设为V BC,根据动量守恒定律和机械能守恒定律列式求解即可.本题综合考查了动量守恒定律和能量守恒定律,综合性较强,过程较为复杂,对学生的能力要求较高,关键要理清过程,选择好研究对象,结合动量守恒进行求解.。