用SuperDecision进行网络层次分析法(ANP)的应用实例一、网络层次分析法简介(一)ANP理论与方法20年代90年代,萨蒂教授(Saaty)在AHP的基础上于提出来的一种适应非独立递阶层次结构的决策方法——网络层次分析法(Analytic Network Process,ANP)[9]。
网络层次分析法将系统各元素的关系用类似网络结构表示,而不再是简单的递阶层次结构,网络层中的元素可能相互影响、相互支配,这样ANP能更准确地描述客观事物之间的联系,是一种更加有效的决策方法。
网络层次分析法在进行决策分析时,需要决策者对每个因素(影响因子)进行两两相对重要程度的判定。
在实际生活中,决策者常常不是对所有的决策因素(影响因子)进行相对重要程度判断,而是根据自己的情况(知识、经验、喜好)对某几个因素(影响因子)进行相对重要程度判断,此时,两两判断矩阵就会出现一些空缺,我们称这种情况为信息不完备[1]。
为此,运用ANP进行分析,通过将问题化为一种二次规划问题来计算出权重,最后运用ANP的极限超矩阵得到总排序。
ANP经常被用来解决具有网络结构的系统评价与决策的实际问题[1]。
(二)ANP网络结构ANP考虑到递阶层次结构部循环及其存在的依赖性和反馈性,将系统元素划分为两大部分,第一部分称为控制因素层,包括问题目标和决策准则,所有的决策准则均被认为是彼此独立的,且受目标元素支配。
控制元素中可以没有决策准则,但至少有一个目标,控制层中的每个准则的权重均可由传统的AHP获得。
第二部分为网络层,它是由所有受控制层支配的元素组成的,其部是互相影响的网络结构,图1就是一个典型的ANP结构。
图1 典型的ANP结构图二、ANP算法步骤(一)分析问题。
将决策问题进行系统的分析、组合形成元素和元素集。
主要分析判断元素层次是否部独立, 是否存在依存和反馈。
可用会议讨论、专家填表等形式和方法进行。
(二)构造ANP的典型结构。
首先是构造控制层次(Control Hierarchy),先界定决策目标。
再界定决策准则,这是问题的基本。
各个准则相对决策目标的权重用AHP法得到。
(三)构造ANP超矩阵计算权重。
ANP赋权的核心工作:解超矩阵,这是一种非常复杂的计算过程,手工运算难度很大,应用Super Decision软件可以解决这个问题。
具体实施步骤如下:1、基于网络模型中各要素间的相互作用,进行两两比较;2、确定未加权超矩阵(基于两两判断矩阵,使用特征向量法获得归一化特征向量值,填入超矩阵列向量);3、确定超矩阵中各元素组的权重(保证各列归一);4、计算加权超矩阵;5、计算极限超矩阵;(使用幂法,即求超矩阵的n次方,直到矩阵各列向量保持不变)。
三、ANP计算工具——SuperDecision由于ANP法的原理和过程比较复杂,考虑的元素较多时用手工计算几乎不可能完成,考虑的元素少则不符合实际情况,影响结果精确性。
,其人工运算极其繁琐,且难度很大,如果不借助计算软件,很难将ANP应用于解决实际决策问题。
RozannW.Satty和William Adams在美国推出了超级决策(Super Decision)软件,为ANP模型真正应用提供条件。
四、实例分析现应用基于依存和反馈的网络层次分析法(ANP)对应急桥梁设计方案进行评估。
具体操作步骤如下:(一)分析问题在此处需要对需要解决的问题进行分析,理清思路,构建起评价体系。
第一,针对问题进行分析,并依此形成指标体系。
在设计某一座应急桥梁时,施工周期、桥梁长度、通行的荷载、车行道宽度、车道中间的中央分隔带、桥下通航净空是一定的。
要比较的因素主要有:1、安全性S桥梁的安全性包括桥梁结构强度(S1)、刚度(S2)、稳定性(S3)。
结构强度、刚度和稳定性存在相互依赖性。
便桥高强度一定高刚度但未必高稳定性;高稳定性一定有高强度和高刚度;高刚度一定保证便桥的高强度和高稳定性。
2、经济性E桥梁的经济性包括所采用的桥梁材料费用(E1)、制造费用(E2)、安装费用(E3)和使用维护费用(E4)。
经济性与安全性是一对矛盾。
经济性越高,安全性就会降低;安全性越高,经济性就越低。
桥梁材料费用和使用维护费用具有一定的依赖性。
若采用性能很好的桥梁材料(同时材料费用也高),则能降低桥梁使用维护费用。
3、耐久性D桥梁的耐久性就是桥梁的使用寿命(D1)。
一定要保证应急桥梁具有与施工周期相对应的耐久性。
耐久性与经济性、安全性存在相互依赖关系。
若桥梁耐久性大大超过施工周期,则桥梁的安全性是有保证的,而经济性就较差了;反之,若桥梁耐久性达不到施工周期的时间,则桥梁的经济性是好了,而安全性得不到保证了。
4、可制造性M所设计的应急桥梁一定要具有良好的可制造性,因为应急桥梁制造周期很短,如果制造周期长了,则势必影响主桥的施工进度。
可制造性包括良好的制造工艺(M1)、方便的现场安装(M2)。
良好的制造工艺、方便的现场安装可降低工厂制造费用和现场安装费用。
为了保证桥梁整体质量,现场连接应采用销接或螺栓连接,应尽量避免焊接,若要焊接,也应减少现场焊接的数量,因为现场焊接质量往往受外界因素的影响较大。
安全性和经济性是一对矛盾。
若要保证较高的安全性,如施工周期是3年,要保证6年的安全性,则材料费用就会高,制造性要求也高,但经济性差;若要保证较高的经济性,如施工周期是3年,仅保证3年的安全性,则材料费用就会低,制造性要求不高,但安全性差。
耐久性与安全性是依存的,与经济性是矛盾的。
耐久性好,则安全性好,但经济性差;安全性好,则耐久性好。
表1 评估应急桥梁设计方案指标体系第二,构建依存和反馈关系。
在指标体系构建过程中, 只识别了评价指标, 而要建立ANP 模型还必须对评价指标之间的互相影响关系(反馈或依赖)进行研究,即:指标的关联情况。
指标关联情况是通过一个二维表形式的专家问卷调查而得知的,通常可以通过以专家调查或是小组讨论方式最终可得到评价指标间的关联情况。
如下图所示:表2 应急桥梁设计方案评估指标关联情况调查表调查说明:顶部元素为被影响的风险因素, 左列为可能引起顶部风险因素的因素。
请在左列因素影响顶部因素的相应空格中打“√”。
图2 应急桥梁设计方案评估ANP结构图第三,形成两两比较矩阵。
两两比较矩阵,即:判断矩阵,主要用于元素间的优势度。
判断矩阵表示对于上一层因素,本层与之有关因素之间相对重要性的比较,凡是相互之间存在依存和反馈关系的, 都应进行两两比较。
判断矩阵是层次分析法的基本信息,也是进行相对重要度计算的依据。
1.获取评估二级指标的关联情况。
依据应急桥梁设计方案评估指标关联情况表(表2)对二级影响因素所影响的三级被影响因素进行计数,即:将作为影响因素的所有二级指标对应的三级影响因素中划了“√”的三级被影响因素进行计数,最终得到一个二维表,如表3所示。
表3 应急桥梁设计方案评估二级指标关联情况根据二级指标关联情况(表3)的计数情况,构建二级指标两两比较矩阵,即:只要相应计数大于0,就必须建立两两比较矩阵,按照“构造判断矩阵的方法”,构建本例的二级指标判断矩阵,如表4所示。
表4 应急桥梁设计方案评估二级指标两两比较矩阵根据应急桥梁设计方案评估二级指标两两比较矩阵(表4),设计用于获取二级指标重要度的调查表,以A 为例,如表5所示。
表5 应急桥梁设计方案评估A 指标重要度调查表2.获取评估三级指标的关联情况。
依据表2(应急桥梁设计方案评估二级指标重要度调查表)对三级被影响因素进行计数运算,即:将作为影响因素的三级指标中划了“√”的三级被影响因素进行计数,最终得到一个二维表,如表6所示。
表6 应急桥梁设计方案评估三级指标关联情况根据三级指标关联情况(表6)的计数情况,构建三级指标两两比较矩阵,即:只要相应计数大于1,就必须建立两两比较矩阵,按照“构造判断矩阵的方法”,构建本例的二级指标判断矩阵,如表7所示。
表7 应急桥梁设计方案评估三级指标两两比较矩阵根据应急桥梁设计方案评估三级指标两两比较矩阵(表7),设计用于获取三级指标重要度的调查表,方法类似二级指标重要度调查表,以Bridge1为例,如表8所示。
表8 应急桥梁设计方案评估Bridge1指标重要度调查表第四,数据处理数据处理是贯穿于整个研究过程的核心,诸如指标的筛选、指标权重的计算要处理的原始数据大部分来自于问卷调查。
问卷处理主要采用Excel完成,而指标权重的计算则采用Super Decision完成。
此处我们主要利用Excel进行调查问卷的处理。
1.调查问卷的设计ANP法主要涉及到的调查问卷有两部分,包括:第一,指标间的关联情况,也就是指标间的反馈和依赖关系;第二,存在反馈或依赖关系指标间的重要程度。
调查问卷的设计在上一步已经进行,具体过程可以参看。
2.调查问卷的填写指标间关联情况的调查问卷在前面已经设计好了,填写方法也已注明。
在此要重点讲述的是存在反馈或依赖关系指标间的重要程度的调查问卷,即:判断矩阵权重的填写。
判断矩阵的填写方法大多采取的是:向填写人(专家)反复询问,针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值。
若在实际操作中构造的判断矩阵不具有一致性,择需要进行一致性检验。
表9 1-9标度法注:C ij ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于C ij={1,3,5,7,9,1/3,1/5,1/7,1/9}。
这些数字是根据人们进行定性分析的直觉和判断力而确定的。
3.调查问卷的处理调查问卷的处理,要尽量安排适当的人员进行,而且要尽量借助Excel等工具来进行,在上面讲述的德尔菲法是我们进行问卷处理的主要步骤和方法,直接参考。
最终得到所有两两比较矩阵的权重,如表10所示。
表10 1-9标度法CR= 0.052CR0.0985 = 3CR=CR= 0.052CR= CRCR==CR= CRCR==CR= CR= CR=CR= CRCR==CR= CRCR==CR= CRCR==CR= CR= CR=CR= CR= CR=CR= CRCR==CRCR==(二)构造指标体系指标体系的构建主要指在Super Decision中完成整个模型的构建,包括:创建元素集、节点、等。
第一,创建元素集ClusterCluster,即元素集,对应的是网络层指标,也就是二级指标。
1.在桌面上单击“Super Decisions”图标或者选择“开始”→“程序”→“SuperDecisions”→“Super Decisions.exe”,启动Super Decisions,Super Decisions主界面,如图3所示。
图3 S uper Decisions主界面注意:Super Decisions启动后,默认已经创建了一个“model”,即模式,也可以通过执行“【File】|【New】”菜单命令来创建,如图4所示。