当前位置:文档之家› 高中物理难点分类解析滑块与传送带模型问题(经典)

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。

分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。

解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢如图2所示。

解答:木板B能获得的最大加速度为:。

∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。

解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:解得:《例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。

(g 取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。

最大静摩擦力可以认为等于滑动摩擦力。

现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少(已知重力加速度g=10m/s2)解答:假设力F作用后A、C一起加速,则:,而A能获得的最大加速度为:,∵,∴假设成立,在A、C滑行6m的过程中:,∴v1=2m/s,,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动:,故C匀速运动;,故AB也匀速运动。

设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s,然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向左,,故t=10s时,v A=0.C在B上继续滑动,且C匀速、B加速:a B=a0=1m/s2,设经时间t4,C.B速度相等:∴t4=1s。

此过程中,C.B的相对位移为:,故C没有从B的右端滑下。

然后C.B一起加速,加速度为a1,加速的时间为:,故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s.$练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,试求:(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端(2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后。

(解答略)答案如下:(1)t=1s,(2)①当F≤N时,A、B相对静止且对地静止,f2=F;,②当2N<F≤6N时,M、m相对静止,,③当F>6N时,A、B发生相对滑动,N.滑块问题1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸远小于L 。

小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s(1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么(2)其它条件不变,若恒力F=牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。

问:m 在M 上面滑动的时间是多大!解析:(1)小滑块与木板间的滑动摩擦力f N mg ==μμ,小滑块在滑动摩擦力f 作用下向右匀加速运动的加速度 a f m g m s 124===//μ,木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加速度a F f M 2=-()/,使m 能从M 上面滑落下来的条件是a a 21>,即N g m M F m f M f F 20)(//)(=+>>-μ解得,(2)设m 在M 上滑动的时间为t ,当恒力F=,木板的加速度a F f M m s 2247=-=()/./ ),小滑块在时间t 内运动位移S a t 1122=/,木板在时间t 内运动位移S a t 2222=/,因S S L 21-= 即s t t t 24.12/42/7.422==-解得2.长为的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为s ,然后A 、B 又一起在水平冰面上滑行了后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=.求:(取g =10m/s 2)(1)木块与冰面的动摩擦因数.(2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大 解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度 [222 1.0m/s2v a g sμ=== 解得木板与冰面的动摩擦因数μ2=(2)小物块A 在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度a 1=μ1g =s 2。

小物块A 在木板上滑动,木块B 受小物块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=s 2 。

设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v ,由长木板的运动得v =a 2t ,解得滑行时间20.8s vt a ==,小物块滑上木板的初速度 v 10=v +a 1t =s ,小物块A 在长木板B 上滑动的距离为22120112110.96m 22s s s v t a t a t ∆=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板B上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0.有220121122v t a t a t L --=,012v v a t v a t ''-==,由以上三式解得,为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度不大于最大初速度0122() 3.0m/s v a a L =+=组合类的传送带问题1.如图所示的传送皮带,其水平部分AB 长s AB =2m ,BC 与水平面夹角θ=37°,长度s BC =4m ,一小物体P与传送带的动摩擦因数μ=,皮带沿A 至B 方向运行,速率为v =2m/s ,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间.(sin37°=,g =l0m/s 2)&A v B2.如图所示为一货物传送货物的传送带abc . 传送带的ab 部分与水平面夹角α=37°,bc 部分与水平面夹角β=53°,ab 部分长度为,bc 部分长度为. 一个质量为m =1kg 的小物体A (可视为质点)与传送带的动摩擦因数μ=. 传送带沿顺时针方向以速率v =1m/s 匀速转动. 若把物体A 轻放到a 处,它将被传送带送到c处,此过程中物体A 不会脱离传送带.(sin37°=,sin53°=,g =10m/s 2)求:物体A 从a 处被传送到b 处所用的时间;, 3.(14分)右图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A ,B 两端相距3m ,另一台倾斜,传送带与地面的倾角,C, D 两端相距4. 45m ,B, C 相距很近。

水平传送以5m/s 的速度沿顺时针方向转动,现将质量为10kg 的一袋大米无初速度地放在A 段,它随传送带到达B 端后,速度大小不变地传到倾斜送带的C 点,米袋与两传送带间的动摩擦因数均为0. 5,g 取10m/s 2,sin37˚=0. 6,cos37˚=0. 8(1)若CD 部分传送带不运转,求米袋沿传送带在CD 上所能上升的最大距离;(2)若倾斜部分CD 以4m /s 的速率顺时针方向转动,求米袋从C 运动到D 所用的时间。

'组合类的传送带1.【答案】。

解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====,得P 匀加速运动的时间110.8s v v t a g μ===.22111112110.8m,22AB s a t gt s s vt μ===-=,匀速运动时间120.6s AB s st v-==.P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=;滑动摩擦力沿斜面向上,其大小为μmg cos37°=.可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=.2.解:物体A 轻放在a 点后在摩擦力和重力作用下先做匀速直线运动直到和传送带速度相等,然后和传送带一起匀速运动到b 点。

在这一加速过程中有加速度21/4.01)6.08.08.0(101sin cos s m m mg mg a =-⨯⨯⨯=-=ααμ①,运动时s a v t 5.211==②,运动距离ab s m a v s <=⨯==25.14.02122121③,在ab 部分匀速运动过程中运动时间s v s s t ab 45.3125.17.411=-=-=④,所以物体A 从a 处被传送到b 和所用的时s t t t 95.545.35.221=+=+=⑤,3.解:(1)米袋在AB 上加速时的加速度20/5s m mmga ==μ,米袋的速度达到0v =5m /s 时,滑βαa bch A行的距离m AB m a v s 35.220200=<==,因此米加速一段后与传送带一起匀速运动到达B 点,到达C 点时速度v 0=5m /s ,设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得mamg mg =+θμθcos sin 代人数据得a=10m /s ,所以,它能上滑的最大距离m av s 25.1220== (2顺斜部分传送带沿顺时针方向转动时,米袋速度减为4m /s 之前的加速度为21/10)cos (sin s m g a -=+-=θμθ,速度减为4m / s 时上滑位移为m a v v s 45.0212211=-=,米袋速度等于4m /s 时,滑动摩擦力方向改变,由于a mg a mg sin cos <μ,故米继续向上减速运动米袋速度小于4m /s 减为零前的加速度为22/2)cos (sin s m g a -=--=θμθ 速度减到0时上滑位移为m a v s 4202212=-=,可见,米袋速度减速到0时,恰好运行到D 点。

相关主题