函数值域求法大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程(1)当1y ≠时,R x ∈ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21 例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数6x 54x 3++值域。
解:由原函数式可得:3y 5y64x --= 则其反函数为:3x 5y 64y --=,其定义域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53, 5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数1e 1e y x x +-=的值域。
解:由原函数式可得:1y 1y e x -+= ∵0e x > ∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域。
解:由原函数式可得:y 3x cos x sin y =-,可化为: 即1y y3)x (x sin 2+=β+ ∵R x ∈∴]1,1[)x (x sin -∈β+ 即11y y312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,426. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=- 当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81 例10. 求函数1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0(7. 换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11. 求函数1x x y -+=的值域。
解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域。
解:因0)1x (12≥+-即1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β= ∵π≤π+β≤π≤β≤4540,0 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域。
解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -= 而此时βtan 有意义。
故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域。
解:)1x )(cos 1x (sin y ++=令t x cos x sin =+,则)1t (21x cos x sin 2-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤ ∴当2t =时,223y max +=,当22t =时,2243y += 故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243。
例15. 求函数2x 54x y -++=的值域。
解:由0x 52≥-,可得5|x |≤ 故可令],0[,cos 5x π∈ββ=∵π≤β≤0当4/π=β时,104y max +=当π=β时,54y min -= 故所求函数的值域为:]104,54[+-8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16. 求函数22)8x ()2x (y ++-=的值域。
解:原函数可化简得:|8x ||2x |y ++-=上式可以看成数轴上点P (x )到定点A (2),)8(B -间的距离之和。
由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域。
解:原函数可变形为:上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和,由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==, 故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域。
解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可看成定点A (3,2)到点P (x ,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差。
即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,根据三角形两边之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<- 即:26y 26<<-(2)当点P 恰好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==- 综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。
如:例17的A ,B 两点坐标分别为:(3,2),)1,2(--,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),)1,2(-,在x 轴的同侧。
9. 不等式法 利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。
例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域。
解:原函数变形为:当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域。
解:x cos x sin x sin 4y =当且仅当x sin 22x sin 22-=,即当32x sin 2=时,等号成立。
由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法 原理:因为)0c (d cx b ax y ≠++=在定义域上x 与y 是一一对应的。
故两个变量中,若知道一个变量范围,就可以求另一个变量范围。
例21. 求函数1x 2x31y +-=的值域。
解:∵定义域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-= 故213y 2y 1x ->+-=或213y 2y 1x -<+-= 解得23y 23y ->-<或 故函数的值域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323,11. 多种方法综合运用例22. 求函数3x 2x y ++=的值域。