求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。
[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。
但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。
为此,我介绍下面几种求逆矩阵的方法,供大家参考。
定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。
即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。
例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。
解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫ ⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。
同样使用初等列变换类似行变换,此略,注意在使用此方法求逆矩阵是,一般做初等行变换,避免做初等列变换。
方法 二. 伴随矩阵法定理:矩阵A 是可逆的充分必要条件是A 非退化,而1-A =d1*A ,(d=A ≠0) (4) 我们用(4)式来求一个矩阵的逆矩阵。
例 2. 求矩阵A 的逆矩阵1-A :已知A= ⎪⎪⎪⎭⎫ ⎝⎛343122321解:d=A =9+6+24-18-12-4=2≠011A =2 12A =-3 13A =221A =6 22A =-6 23A =2 31A =-4 32A =5 33A =-2用伴随矩阵法,得1-A =d 1*A =⎪⎪⎪⎪⎭⎫ ⎝⎛----11125323231说明:虽然这个公式对任何可逆矩阵都适用,但由于计算量大,一般只用于较低阶的矩阵的求逆比如二阶三阶矩阵的逆,尤以对二阶,此方法更方便。
方法 三. 矩阵分块求逆法 在进行高阶矩阵运算时,经常将高阶矩阵按某种规则分成若干块,每一小块是一小矩阵,这样一方面对小矩阵进行运算,一方面每一小矩阵又可作为一个元素按运算规则来进行运算,求出矩阵的逆矩阵。
引出公式: 设T 的分块矩阵为:T= ⎪⎪⎭⎫⎝⎛D C B A , 其中T 为可逆矩阵,则1-T = ⎪⎪⎭⎫⎝⎛------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A , (5)说明:关于这个公式的推倒从略。
例 3. 求下列矩阵的逆矩阵,已知 W=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛5243210040103001 解:将矩阵W 分成四块,设A=⎪⎪⎪⎭⎫⎝⎛100010001, B=⎪⎪⎪⎭⎫ ⎝⎛243, C=()243, D=()5,于是 ),24()(1-=--B CA D 即11)(---B CA D =)241(-B A 1-=B=⎪⎪⎪⎭⎫ ⎝⎛243, 1-CA =C=()243,利用公式(5),得1-W =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------12432208648812361215241 方法 四. 因式分解法若0=k A ,即(E-A )可逆,且有1)(--A E =12-++++K A A A E , (6) 我们通过上式(6),求出1-A 例 4.求下面矩阵的逆矩阵,已知:A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1000011000211003211043211, 解:因为存在一个K 0,使K A E )(-=0,把这里的(E-A )替换(6)式中的“A ”,得 1-A =12)()()(--++-+-+K A E A E A E E通过计算得 4)(A E -=41000011000211003211043211⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=0,即K=4所以 1-A =32)()()(A E A E A E E -+-+-+=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000001000001000001000001+⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000010000210003210043210+=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100011000111000111010111方法 五.多项式法我们知道,矩阵A 可逆的充分必要条件是有一常数项不为零的多项式f(x),满足f(A)=0,用这个知识点也可以求出逆矩阵。
例 5.已知矩阵A=⎪⎪⎭⎫⎝⎛--3312,且A 满足多项式f(x)=0352=+-E X X ,即0352=+-E A A 试证明A 是可逆矩阵,并求其可逆矩阵。
证:由0352=+-E A A ,可得E E A A =+-)3531(从而可知A 为可逆矩阵,并且⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛---=+=-32131110013533123135311EA A方法 六. 解方程组法在求一个矩阵的的逆矩阵时,可设出逆矩阵的待求元素,根据等式E AA =-1两端对应元素相等,可得出相应的只含待求元素的诸多线性方程组,便可求解逆矩阵。
例 6.求A=⎪⎪⎪⎭⎫ ⎝⎛343122321的逆矩阵解:求可逆矩阵A 的逆矩阵X ,则它满足AX=E ,设),,(321X X X X =,则⎪⎪⎪⎭⎫⎝⎛=0011AX , ⎪⎪⎪⎭⎫ ⎝⎛=0102AX , ⎪⎪⎪⎭⎫ ⎝⎛=1003AX利用消元解法求⎪⎪⎪⎭⎫ ⎝⎛=i i i i x x x X 321 (i=1,2,3)解得:⎪⎪⎪⎪⎭⎫ ⎝⎛----==-1110253232311X A方法 七. 准对角矩阵的求逆方法定义:形如 ii nn A A A A A ,0000002211⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= 是矩阵 n i ,2,1= 。
A 称为准对角矩阵。
其求逆的方法:可以证明:如果nn A A A ,,,2211 都可逆,则准对角矩阵也可逆,且⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11221111221100000000000nn nn A A A A A A例 7. 已知 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=500051002300004A ,求1-A 。
解:设11A =4 ⎪⎪⎪⎭⎫⎝⎛-=512322A 533-=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=33221100000A A A A求得:,41111=-A ⎪⎪⎪⎭⎫⎝⎛=-3125171122A 51133-=-A所以 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=----51000173171001721750000410000001331221111A A A A方法八.恒等变形法有些计算命题表面上与求逆矩阵无关,但实质上只有求出其逆矩阵之后,才能解决问题。
而求其逆矩阵常对所给矩阵进行恒等变形,且常变为两矩阵乘积等于单位矩阵的等式。
例 8.已知E A =6 , 求11A , 其中⎪⎪⎪⎪⎭⎫ ⎝⎛-=21232321A , 解:对已知矩阵等式E A =6进行恒等变形,得 E A A A A A E A =∙=∙=∙=116666于是,111-=A A ,又因为A 是正交矩阵,T A A =-1,所以⎪⎪⎪⎪⎭⎫ ⎝⎛-===-21232321111T A A A方法九.公式法利用下述诸公式,能够迅速准确地求出逆矩阵。
1) 二阶矩阵求逆公式(两调一除):若 A=⎪⎪⎭⎫ ⎝⎛d c b a , 则⎪⎪⎭⎫ ⎝⎛--=-a c b d A A 112) 初等矩阵求逆公式:ij ij E E =-1)1()(1kE k E i i =-)()(1k E k E ij ij -=-3) 对角线及其上方元素全为1的上三角矩阵的逆矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100011101111A 的逆矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-100001100000110000111A4) 正交矩阵的求逆公式: 若A 为正交矩阵,则T A A =-15)其他常用的求逆公式: 111)(---=A B AB T T A A )()(11--= A A A A 111)*(*)(---==S A A A A ,,,,321 可逆 ,则11121121)(----=A A A A A A S S 例 9. 已知:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001A , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100110111B ,求1)(-AB 。
解:由于A 是初等矩阵,由公式得:A A =-1而B 为元素都为1的上三角矩阵,由公式得:⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111B ,再由公式得:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-0111010111100001100110011)(1AB到此为止,我已介绍了9种求逆矩阵的方法,除此外还有求正定矩阵的逆矩阵的三角阵法,由于其方法不是很简便,在此略。
这些方法各有所长,读者可根据实际情况进行选择。
当然,除此之外还有其它方法。
希望能和大家在今后的学习中,共同研究出更方便,更有效的矩阵求逆方法。
参考文献:[1] 高等代数/北京大学数学系几何与代数教研室代数小组编。
1988.3 [2] 高等代数一题多解200例/ 魏献祝 编 福建人民出版社。
[3] 线性代数学习指导/ 戴宗儒编科学技术出版社。
[4] 线性代数解题方法技巧归纳/ 毛纲源编华中理工大学出版社。
[5] 数学手册/ 《数学手册》编写组编。