第八章 玻色统计和费米统计
164
N = ∑ e 1 −1, ( ) nx ,ny ,nz
1 kT
⎡⎣ℏ
nxωx +nyω y +nzωz
⎤ ⎦
(6)
或
∑1
N = , nx +ny +nz e −1 nx ,ny ,nz
(7)
课 后 答 案 网
其中
ni
=
ℏωi kTc
ni
(i = x, y, z).
在T << Tc 时,凝聚在基态的粒子数 N0 由下式确定:
课 后 答 案 网
N
−
N0
= 1.202⎛⎜⎝
kT ℏω
3
⎞ ⎟⎠
,
上式可改写为
3
N0 N
⎛T
=
1
−
⎜ ⎝
TC
⎞ ⎟ ⎠
.
(10)
式(9)和式(10)是理想玻色气体的结果. 实验上实现玻色凝聚的气体,原
子之间存在弱相互作用,其特性与理想玻色气体有差异. 互作用为斥力或吸
.
(6)
将式(5)代入式(4)可将费米巨配分函数表示为
∑ ln Ξ =
l
ωl
ln
ωl ωl −
al
.
(7)
将式(6)和式(7)代入式(3), 有
159
∑ S = k
l
⎛ ⎜ ⎝
ωl
ln
ωl ωl −
al
+
al
ln
ωl − al
al
⎞ ⎟ ⎠
∑ = k ⎡⎣ωl ln ωl − al ln al − (ωl − al )ln (ωl − al )⎤⎦.
能量为
( ) ℏ
ε0 = 2 ωx +ωy +ωz
163
的基态,在 N → ∞, ω → 0, Nω 3 保持有限的热力学极限下,临界温度Tc 由下式确 定:
N
=
1.202 ×
⎛ ⎜
⎝
kTc ℏω
3
⎞ ⎟ ⎠
,
1
其中 ω = (ωxωyωz )3 .温度为 T 时凝聚在基态的原子数 N0 与总原子数 N 之比为
在 ℏωi << 1的情形下,可以将 ni 看作连续变量而将式(7)的求和用积分代替. 注
kTc
意到在 dnxdnydnz 范围内,粒子可能的量子态数为
⎛ ⎜ ⎝
kTc ℏω
3
⎞ ⎟ ⎠
dnxdnydnz
,
即有
∫ N
=
⎛ ⎜⎝
kTc ℏω
3
⎞ ⎟⎠
dnxdnydnz , e − 1 nx +n y +nz
∑ lnΩ = ⎡⎣ωl ln ωl − al ln al − (ωl − al )ln (ωl − al )⎤⎦.
l
另一方面,根据式(8.1.10),理想费米系统的熵为
S
=
k
⎛ ⎜ ⎝
ln
Ξ
−
α
∂ ∂α
ln
Ξ
−
β
∂ ∂β
ln
Ξ
⎞ ⎟ ⎠
( ) = k ln Ξ +α N + βU
=
k
⎡ ⎢⎣ln
Ξ
课 后 答 案 网
S
=
∫
CV T
dT
+
S0
(V
).
将式(4)代入,得弱简并气体的熵为
(5)
3
S
=
3 Nk ln T
2
± Nk
1
7
22
1 g
⎛ h2
n
⎜ ⎝
2πmkT
⎞2 ⎟ ⎠
+ S0 (V ).
(6)
式中的函数 S0 (V ) 可通过下述条件确定:在
3
nλ 3
=
N V
⎛ ⎜ ⎝
⎞ ⎟ ⎠
+
al ωl
ln
al ωl
⎤ ⎥, ⎦
(1)
式中 ∑
l
表示对粒子各能级求和.
以
fs
=
al ωl
表示在能量为 εl
的量子态
s
上的平
均粒子数,并将对能级 l 求和改为对量子态 s 求和,注意到
上式可改写为
∑ωl ~ ∑ ,
l
s
∑ SF.D. = −k ⎡⎣ fs ln fs + (1− fs ) ln (1 − fs )⎤⎦.
8.4 试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-
受因斯坦凝聚.
解: 如§8.3 所述,令玻色气体降温到某有限温度 Tc ,气体的化学势将趋于 -0. 在T < Tc 时将有宏观量级的粒子凝聚在 ε = 0 的基态,称为玻色-爱因斯坦凝 聚. 临界温度 Tc 由条件
162
确定.
+∞ D (ε )dε
s
(2)
160
由于 fs ≤1,计及前面的负号,式(2)的两项都是非负的. 对于理想玻色气体,通过类似的步骤可以证明
∑ SF.D. = −k ⎡⎣ fs ln fs − (1+ fs ) ln (1 + fs )⎤⎦.
s
(3)
对于玻色系统 fs ≥ 0 ,计及前面的负号,式(3)求和中第一项可以取负值,第
课 后 答 案 网
3
N0 N
⎛T ⎞
=
1−
⎜ ⎝
Tc
⎟ ⎠
.
解: 约束在磁光陷阱中的原子,在三维谐振势场中运动,其能量可表达
为
ε
=
⎛ ⎜ ⎝
px2 2m
+
1 2
mω
2 x
x2
⎞ ⎟ ⎠
⎛ + ⎜⎜
⎝
p
2 y
2m
+
1 2
mω
2 y
y
2
⎞ ⎟⎟ + ⎠
⎛ ⎜ ⎝
pz2 2m
+
∑ SF.D. = k ⎡⎣ωl ln ωl − al ln al − (ωl − al )ln (ωl − al )⎤⎦
l
∑ = −k
l
⎡⎢(ωl
⎣
− al
) ln
ωl − al ωl
+ al
ln
al ωl
⎤ ⎥ ⎦
∑ = −k
l
ωl
⎡⎛ ⎢⎜1− ⎣⎝
al ωl
⎞ ⎟ ln ⎠
⎛ ⎜1− ⎝
al ωl
⎢⎢1
±
1
5
⎢⎣ 22
1 g
N ⎛ h2
V
⎜ ⎝
2πmkT
3⎤
⎞ ⎟ ⎠
2
⎥ ⎥ ⎥⎦
(1)
(式中上面的符号适用于费米气体,下面的符号适用于玻色气体,下同). 利
用理想气体压强与内能的关系(见习题 7.1)
可直接求得弱简并气体的压强为
p= 2U, 3V
(2)
⎡
p = nkT ⎢⎢1±
1
5
⎢⎣ 22
1 ⎛ h2
1 2
mω
2 z
z2
⎞ ⎟, ⎠
(1)
这是三维谐振子的能量(哈密顿量). 根据式(6.2.4),三维谐振子能量的
可能值为
ε nx ,ny ,nz
=
ℏω
x
⎛ ⎜
nx
⎝
+
1 2
⎞ ⎟ ⎠
+
ℏω
y
⎛ ⎜ ⎝
n
y
+
1 2
⎞ ⎟ ⎠
+
ℏω
z
⎛ ⎜ ⎝
nz
+
1 2
⎞ ⎟ ⎠
,
nx , ny , nz = 0, 1, 2, ⋯
kTc
,上式可改写为
2πL2
+∞ dx
∫ h2 mkTc 0 ex −1 = n.
在计算式(3)的积分时可将被积函数展开,有
1
1
( ) ( ) ex −1 = ex 1− e−x
= e−x 1 + e−x + e−2x +⋯ ,
(3)
则
∫ +∞ 0
dx ex −1
=
1
+
1 2
+
1 3
+
⋯
∑∞ 1
=. n=1 n
低能级的能量,即 化学势 µ 由
( ) ℏ
µ < ε0 ≡ 2 ωx +ωy +ωz .
(4)
N = ∑ e 1 −1 ( ) nx ,ny ,nz
1 kT
⎡⎣ℏ
nxωx +nyωy +nzωz
+ε
0
−µ
⎤ ⎦
(5)
确定. 化学势随温度降低而升高,当温度降到某临界值Tc 时 ,µ 将趋于 ε0.临界 温度 Tc 由下式确定:
l
比较式(8)和式(2), 知
(8)
S = k ln Ω.
(9)
对于理想玻色系统,证明是类似的.
课 后 答 案 网
8.2 试证明,理想玻色和费米系统的熵可分别表示为
∑ SB.E. = k ⎡⎣ fs ln fs − (1+ fs ) ln (1 + fs )⎤⎦,
s
∑ SF.D. = −k ⎡⎣ fs ln fs + (1− fs )ln (1 − fs )⎤⎦,
(2)
如果原子是玻色子,根据玻色分布,温度为 T 时处在量子态 nx, ny, nz 上的粒子 数为