当前位置:文档之家› 【高考数学二轮复习提升微专题】第34讲 割补法与等积法-解析版

【高考数学二轮复习提升微专题】第34讲 割补法与等积法-解析版

第34讲 割补法与等积法一、知识与方法1 割补法割补法包括分割法和补体法,求一个几何体的体积可以将这个几何体分割成几个柱 体,锥体,分别求出雉体和柱体的体积, 从而得出几何体的体积,这种方法称为分割法. 用 于直接解题较困难,分割后化繁为简,使问题较易获得解快,但有时候,所给的几何体并不 复杂,却很难直接计算求解,这类几何体实际上是一个常规几何体的一部分. 通过添补适当 的几何体,将其扩展为新的、其特征为我们比较熟悉的几何体,以便于从整体上宏观把握,处 理局部问题的一种方法称为补体法,体现了拓展空间, 从更广阁的范围内处理局部问题的整 体思想.分割法与补体法合在一起称为割袳法.2 等积法(又称等积变换法)(1)利用三棱锥的“等积性”,即体积计算时可以任一个面作为三棱雉的底面. (1)求体 积时,可选择“容易计算”的方式来计算; (2)利用“等积法”可求“点到面的吟离”,关键是在 面中选取 3 个点,与已知点构成三棱锥.(2) 等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的等 价转换.二、典型例题【例1 】(1) 如图 384- 所示,已知多面体 ABC DEFG - 中, ,AB AC ,AD 两两互相垂直,平面 //ABC 平面 DEFG , 平面 //BEF 平面 ,2,1ADGC AB AD DG AC EF =====, 则该多面体的体积为 ( ).A. 2B. 4C. 6D. 8(2) 如图 385- 所示,在多面体 ABCDEF 中, 已知 ABCD 是边长为 1 的正方形, 且 ,ADE BCF 均为正三角形. //,2EF AB EF =, 则该多面体的体积为( ).A. B. C. 43 D. 32【分析 】本例两小题给出的都是不规则几何体,直接求体积比较困难,可以将 这个几何体分割成若干规则的几何体,从而得出几何体的体积(求规则几何体的体积再合 成),也可认运用补体法补成一个规则几何体再求解,如第(1) 问,可把题中给出的几何体 分割成两个三棱柱或补成一个正方体;第(2)问,不同的分割可以引发一题多解与发散思 维,这种解法体现了割补思想和等积变换思想.【解析】 (1) 【解法 一 】(割)如图 386- 所示,过点 C 作 CH DG ⊥ 于 H , 联结EH ,把多面体分割成一个直三棱柱 DEH ABC - 和一个斜三棱柱 BEF CHG -.于是所求几何体的体积为 112122122DEH BEF V S AD S DE ⎛⎫⎛⎫=⋅+⋅=⨯⨯⨯+⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭2 4.=【解法 二 】(补)如图 387- 所示. 将多面体补成棱长为 2 的正方体. 显然所求的多面体的体积为该正方体体积的一半.于是所求几何体的体积 31242V =⨯=.(2) 【解法 一】 (分割法一)如图 388- 所示,分别过 ,A B 作 EF 的垂线, 垂足分别为点 ,G H , 联结 ,DG CH .则原几何体分割为两个三棱雉和一个直三棱柱,锥高12, 柱高 1. 2AG ==, 取 AD 中点 M , 则2MG =11112224434AGD S V =⨯⨯=∴=+⨯⨯123=【解法 二】 (分割法二)如图 389- 所示,取 EF 中点P , 则原几何体分割为两个三棱雉和一个四棱雉,易 知三棱雉 P AED - 和三棱雉 P BCF - 都是棱长为 1 的正四面体,四棱雉 P ABCD - 为棱长为 1 的正四 棱雉.2111233V =⨯+⨯= 【例 2】 已知直三棱柱 111ABC A B C - 中, 222A B C 是用一平面截得的截面,且 21AA h =, 2223,BB h CC h == , 若 ABC 的面积为 .S 求证:介于截面与下底面之间的几何体的体积为 ()12313V S h h h =++. 【分析】由于几何体 222A B C ABC - 是一个不规则的几何体,为求得其体积不 妨采用分割或补体的方法来求解和证明.【解析】【证法 一】 (分割)为了讨论方便, 不妨设 123h h h , 可将几何 体 222ABC A B C - 分割成一个小直三棱柱与两个三棱雉. 如图 390- 所示,过 2A 作 23//A B AB 交 2B B于 3B , 过 3B 作 33//B C BC 交 2C C 于 3.C 联结 23A C ,23B C , 则几何体 222ABC A B C - 被分割成直三棱柱 233ABC A B C - 、三棱雉 2233B A B C - 、二棱锥 2A 232B C C -设 ,BC x A = 到 BC 的距离为 d , 则 12S xd =. 由于 ()23322331211,3ABC A B C B A B C V Sh V S h h --==-, ()()223223231311111.3323A B C c B C C V S d h h x d S h h -=⋅=⋅-⋅⋅=- 故 ()2222332233223212313ABC A B C ABC A B C B A B C A B C C V V V V S h h h ----=++=++. 【证法二】(补体)将几何体 222ABC A B C - 以 ABC 为底面进行两次等几何体补形,使侧 棱的长均为 123h h h ++, 这样就将不规则的几何体补形为新的直三棱柱.而原几何体的体积等于这个新直三棱柱体积的 13, 故 ()222123 1133ABC A B C V V S h h h -==++新直三榬柱.【例 3】 如图 391- 所示,三棱锥 A BCD - 中, AB ⊥ 平面 BCD ,CD BD ⊥(1) 求证: CD ⊥ 平面 ABD ;(2) 若 1,AB BD CD M === 为 AD 中点,求三棱雉A MBC - 的体积.【分析】 利用三棱锥的“等积法”,即体积计算时,可以任一个面作为三棱锥 的底面,利用“等积法”可求“点到面的距离”,关键是在面中选取三个点,与已知,点构成 三棱锥.等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的 等价转换.【解析】(1) 证明: :AB ⊥ 平面 ,,BCD CD BD CD ⊥⊂ 平面 ,ABD BD ⊂ 平面 ABD , CD ∴⊥ 平面 .ABD(2)【 解法一】 由 AB ⊥ 平面 BCD ,得 AB BD ⊥,11,.2ABD AB BD S ==∴= M 为 AD 中点, ABM 11.24ABD S S ∴== 由 ()1 知,CD ⊥ 平面 ABD ,∴ 三棱锥 C ABM - 的高 1h CD ==.因此三棱雉 A MBC - 的体积 B 13A MBC C ABM A M V V S h --==⋅1.12=【解法二 】由 AB ⊥ 平面 BCD 知,平面 ABD ⊥ 平面 BCD .又平面 ABD ⋂ 平面 BCD BD = , 过点 M 作 MN BD ⊥ 交 BD 于点 N ,如图 392-所示,则 MN ⊥ 平面 BCD , 且 1122MN AB ==. 又 1,1,2BCD CD BD BD CD S ⊥==∴=. ∴ 三棱倠 A MBC - 的体积 1133A MBC A BCD M BCD BCD V V V AB S MN ---=-=⋅-. 112BCD S =. 三、易错警示【例 】 正方体容器 1AC 中盛满水, ,,E F G 分别是 1111,,A B BB B C 的中点,若 3 个小孔 分别位于 ,,E F G 三点处,则正方体中的水最多会剩下原体积的( ). A. 78 B. 1112 C. 56 D. 2324【错解】剩下的水的最大容积是截面 EFG 以下几何体的体积,如图 393- 所示,设 1CC 的中点为 11,M C D 的中点为 N ,则截面 EFG 在正方体 1AC 的截面是 EFMN , 设正方体 1AC 的棱长为 1, 则三棱柱 11B EF C MN - 的体积 1111111.2228B EFC MN V =⨯⨯⨯= 于是, 正方体的水最多会剩下原体积的 17188-=, 故 选 A.【评析及正解】上迌解法是否正确,我们可认考查另一种情形.考虑由 1,,B E C 确定的截面,如图 394- 所示.此时,另一个小孔在截面 1BEC的上方, 此 时 三 棱 锥 11B BEC - 的体积为 1113B BEC V -=⨯ 111111.22128⎛⎫⨯⨯⨯=< ⎪⎝⎭ 于是, 正方体中的水最多会剩下原体积的 11111212-=, 故应选 B . 1. 从选项看,还有 2324, 那么,会不会是这个结果呢? 我们可以 考虑一般的情形.【正确的解法】如下:【解析】:我们注意到, 当正方体中剩下的水最多时,这时的水平面必定经过其中的两个小孔, 不妨设经过小孔 ,E G , 如图 395- 所示,另一个小孔 F 在该平面的上方. 设过 ,E G 的平面与棱 1111,,BB CC C D 的交点分别为 ,,H P Q , 则流出的水的最小体 积是台体 11B EH C QP - 的体积.设正方体 1AC 的棱长为 2 , 则 11B E =, 设 ()112B H x x =, 则 12C P x =-. 由 11B EH C QP , 得 12x C Q x-=. 于是, 台体 11B EH C QP - 的体积为112231(2) 31(2)14 2233121222,3312B EHC QP x V x x x x x x x ⎡⎤-=+⎢⎥⎢⎥⎣⎦⎡⎤-⎛⎫=+=+-⎢⎥ ⎪⎝⎭⎣⎦⎛⎫⋅==⨯ ⎪ ⎪⎝⎭当且仅当 4x x =, 即 2x = 时,台体 11B EH C QP - 的体积最小, 为正方体体积的 112. 此 时,点 H 与点 B 重合, 即截面为 1BEC , 故选 B.四,难题攻略【例】 在三棱台 111ABC A B C - 中, 111,2A B G AB = 为 1CC 的中点,截面 1A BG 将棱台分 成上、下两部分,求这两部分体积之比.【分析】 由于合成的两部分都是不规则的几何体,故需将其分割成几个锥体 (特别是三棱锥)的组合体才便于计算体积之比,需要提醒的是这里有等面积、等高,等体 积的运用,使问题的解答别开生面.【解析】 如图 396- 所示, 联结 11,BC A C , 则棱台被分割成 4 个三棱 锥的组合体, 注意到 3 个三棱锥 11111,A BC G A BC B --,1A BCG - 都等高, 因而其体积之比为底面面积之比.又在梯形 11BCC B 中, 由 111112B C A B BC AB ==, 且 G 为 1C C 的 中点, 有 11.BCC BOG BC B S S S ==即 111111ΛBCC A BCC A BC B V V V V ---===,从而 111112A BCC A BC B V V V V --=+=上,在三棱雉 111B A B C - 与三棱雉 1A ABC - 中, 它们的高相等, 且 1114ABCA B C S S=,则 1111111444A ABC B A B c A BC B V V V V ---===.从而 1155A ABC A BCC V V V V --=+=下, 故 t :2:5V V =下 为所求.五、强化训练1.如图397-所示,在直三棱柱111ABC A B C -中,12,,2AB BC AA ABC M π∠===是BC中点.(1)求证:1//A B 平面1AMC ;(2)求直线1CC 与平面AMC 所成角的正弦值;(3)试问在棱11A B 上是否存在点N ,使得AN 与1MC 所成角为?3π若存在,确定点N 位置;若不存在,请说明理由.【解析】(1)如图①所示,联结,设与相交于点,则为中点,联结,则为的中位线,依据线面平行判定定理可得.(2)将图①补体为图②,设直线与平面所成角为,则 .由题意,不妨设,依据等体积法可得1A C 1AC O O 1A C OM OM 1A BC 11111AB OM A B AMC A B AMC OM AMC //⎫⎪⊄⇒//⎬⎪⊂⎭平面平面平面1CC 1AMC α11sin C AMC h CC α-=122AB BC AA ===. (3)假设在棱上存在点,使得与成角,不妨设在棱上取点,使得,易得,如图③所示,故与成角.在中,由余弦定理可得.故在棱上存在点,且为棱的中点,使得与成角.111111133C AMC C AMC AMC C AMC AMCC AMC V V Sh Sh ----=⇒=11122sin 33C AMC C AMC h h CC α--⇒=⇒==11A B N AN 1MC 3π1(02)A N t t =≤≤CD Q CQ t =1AN C Q//1C Q 1MC 3π1MQC 22222211112cos3MQ MC QC MC QC π=+-⇒=+1[0,2]t -=∈11A B N N 11A B AN 1MC 3π。

相关主题