当前位置:文档之家› 表面与胶体化学—胶体的基本性质(三)

表面与胶体化学—胶体的基本性质(三)


如As2S3胶体制备:
As 2 O3 + 3H 2 O 饱和溶液→ 2H 3AsO3
2H 3 AsO3 通入 → As 2S3 + 6H 2 O H 2S
因HS-为稳定剂(H2S过量)因此胶粒带负电。
胶体粒子
{[As2S3]m·nHS-·(n-x)H+}x-·xH+
胶核 胶团 紧密层 扩散层
电解质离子在固液界面的吸附 1.离子晶体的选择性吸附 离子晶体总是选择性地吸附与其晶格 相同或相似的离子,并形成难溶盐。 例如:当Na2SO4与过量的BaCl2在溶 液中形成BaSO4沉淀时,由于BaCl2过量, 生成的BaSO4沉淀物总是优先吸附溶液 中的Ba2+使表面带正电荷,Cl-以扩散状 分布于粒子附近。
+ K K K +K I
K
+
- - I-I - I I
K
K+
滑动面
+
+
+
K
+
胶体体系加入某些电解质,改变温度, 胶体体系加入某些电解质,改变温度, 加入一定浓度的大分子化合物等可使分散 相粒子聚集成可分离的沉淀物。 相粒子聚集成可分离的沉淀物。这一过程 称为聚沉或絮凝, 称为聚沉或絮凝,形成沉淀物称为聚沉物 或絮凝物。 或絮凝物。 有人将因加入无机电解质引起的聚集 称为聚沉, 称为聚沉,将加入大分子引起的聚集称为 絮凝。 絮凝。
胶体粒子
可滑动面
扩散层
{ [AgI]m n I- . (n-x) K+ }x胶核
x K+
2.静电物理吸附 静电物理吸附 紧密层 带电固体表面对溶液中带 电符号相反离子有库仑引力 作用而使其浓集于表面周围 的扩散层中,并最终使表面 电荷中和。异电离子价数越 高,其吸附能力越强,这是 由静电引力决定的。 静电作用引起的吸附重要 实例是使胶体体系的聚沉作 用。加入电解质迫使反离子 更多 进入吸附(紧密)层,扩散层变薄,稳定性下降。
M+:M2+:M3+=(1)6: (1/2)6: (1/3)6 ( ) ) ) 式中括号中分母为反离子的价数) (式中括号中分母为反离子的价数)
一般来说,在其他条件相同时, 一般来说,在其他条件相同时,一价反离子 值约在25~ 的CCC值约在 ~150间,二价反离子的在 值约在 间 0.5 ~2间,三价反离子在 间 三价反离子在0.01 ~0.1间。 间 同价反离子的CCC值较为接近,但也略有不 同价反离子的 值较为接近, 值较为接近 同,如 Li+>Na+>K+>NH4+>Rb+>Cs+ Mg2+>Ca2+>Sr2+>Ba2+ SCN->I->NO3->Br->Cl->F->Ac这一顺序与它们水合离子半径由大到小的顺 序大致相同。这一顺序称为感胶离子序 感胶离子序。 序大致相同。这一顺序称为感胶离子序。
三.DLVO理论 理论 DLVO理论认为:疏液胶体粒子间既有因粒 理论认为: 理论认为 子带电形成的扩散双电层交联时产生的静电排 斥作用,又有粒子间van der Waals力相互吸引 斥作用,又有粒子间 力相互吸引 作用,此两作用均与粒子间距离有关。 作用,此两作用均与粒子间距离有关。当粒子 间排斥能大于吸引能时,胶体体系稳定; 间排斥能大于吸引能时,胶体体系稳定;当吸 引能大于排斥能时,粒子发生聚集, 引能大于排斥能时,粒子发生聚集,体系稳定 性破坏。 性破坏。粒子表面溶剂化层的形成有利于提高 稳定性。加入反离子, 稳定性。加入反离子,压缩双电层利于粒子聚 粒子间总作用能U( )为排斥能U 集。粒子间总作用能 ( h)为排斥能 i(h) ) 与吸引能U 与吸引能 m(h)之和。 )之和。
胶体粒子
可滑动面
K+
+
{ [AgI]m n I- . (n-x) K+ }x胶核
+
x K+
K+
K K K - - I-I - - II II I
K+
K+ K + K -- I I- II I
+
K
K
+
K
+
K
- - - - IIII - II I II
+
+
胶团
胶核
+
(AgI)m
K+ K + K
K+
胶粒
滑动面以内的部分称为胶粒, 滑动面以内的部分称为胶粒,胶粒与扩散层之间有一个 胶粒 电位差,称为胶体的电动电位 电动电位( 电位) 电位差,称为胶体的电动电位(ζ电位)。而胶核表面的 电位离子与溶液之间的电位差称为总电位(φ0电位)。 电位离子与溶液之间的电位差称为总电位( 电位) 总电位
粒子间的静电排斥作用
排斥能可由下式计算: 排斥能可由下式计算:
H h
Ze ϕ δ exp( 2 kT ) − 1 64 π an 0 kT Ui = exp( − κ h ) 2 κ exp( Ze ϕ δ ) + 1 2 kT n0 : 单位体积粒子数 κ: 扩散双电层厚度的倒数 a : 粒子半径 h : 粒子之间的距离
Zeϕδ exp( ) − 1 64πan0 kT Aa 2kT U = Ui + Um = exp(−κh) − Zeϕδ 12h κ2 exp( ) + 1 2kT
2
由于扩散层厚度的减小, 由于扩散层厚度的减小, 电位相应降低, ζ电位相应降低,胶粒间的 相互排斥力也减少。 相互排斥力也减少。 由于扩散层减薄, 由于扩散层减薄,颗粒 相撞时的距离减少, 相撞ቤተ መጻሕፍቲ ባይዱ的距离减少,相互间 的吸引力变大。 的吸引力变大。 颗粒间排斥力与吸引力 的合力由斥力为主变为以引 力为主,颗粒就能相互凝聚。 力为主,颗粒就能相互凝聚。 两个胶粒能否相互凝聚, 两个胶粒能否相互凝聚, 取决于二者的总势能。 取决于二者的总势能。
2
粒子间的van der Waals吸引作用
对于半径为a,相距 的球形粒子相互吸引能 的球形粒子相互吸引能U 对于半径为 ,相距h的球形粒子相互吸引能 m 为:
Um
Aa =− 12 h
A为Hamaker常数。
球形粒子间总的作用应为U 球形粒子间总的作用应为 i和Um之和
Ze ϕδ exp( ) − 1 64πan0 kT Aa 2 kT U = Ui +Um = exp( −κh ) − 2 Ze ϕ δ 12 h κ exp( ) + 1 2 kT
胶体的基本性质
(三)胶体的稳定性和流变性
第五节 胶体稳定性
一.疏液胶体的稳定性 疏液胶体的稳定性 胶体体系一般分为亲液胶体与疏液胶体。 胶体体系一般分为亲液胶体与疏液胶体。 亲液胶体为热力学稳定体系, 亲液胶体为热力学稳定体系,即在常规 条件下,即使加入少量其他物质, 条件下,即使加入少量其他物质,体系的稳 定性也不会破坏。 定性也不会破坏。 疏液胶体是热力学不稳定体系, 疏液胶体是热力学不稳定体系,有自发 破坏的本能, 破坏的本能,即分散相粒子相互吸引而自发 聚集, 聚集,加入某些稳定剂只能使疏液胶体有相 对的稳定性。 对的稳定性。
2.Schulze-Handy规则 规则 临界聚沉浓度CCC除与体系中胶体粒子浓 临界聚沉浓度 除与体系中胶体粒子浓 度,反离子大小,电解质加入方式和加入时间 反离子大小, 等因素有关外,主要由反离子的价数决定。 等因素有关外,主要由反离子的价数决定。 反离子价数越高, 越小, 反离子价数越高,CCC越小,CCC与反离 越小 与反离 子价数6次方成反比 此即Schulze-Hardy规则。 次方成反比, 规则。 子价数 次方成反比,此即 规则 对于带负电胶体粒子, 关系: 对于带负电胶体粒子,CCC关系: 关系
不同电解质对溶胶的聚沉值 不同电解质对溶胶的聚沉值/mmol·L-1 聚沉值
As2S3 (负溶胶 负溶胶) 负溶胶 58 LiCl 51 NaCl KCl 49.5 50 KNO3 CaCl2 0.65 MgCl2 0.72 0.81 MgSO4 AlCl3 0.093 1/2Al2(SO4)3 0.096 0.009 Th(NO3)4 AgI (负溶胶 负溶胶) 负溶胶 165 LiNO3 NaNO3 140 KNO3 136 RbNO3 126 Ca(NO3)2 2.40 Mg(NO3)2 2.60 Pb(NO3)2 2.43 Al(NO3)3 0.067 La(NO3)3 0.069 Ce(NO3)3 0.069 Fe(OH)3 (正溶胶 正溶胶) Al2O3 (正溶胶 正溶胶) 正溶胶 正溶胶 NaCl 9.25 NaCl 43.5 KCl 9.0 KCl 46 KBr 12.5 KNO3 60 KI 16 KCNS 67 K2SO4 0.205 K2SO4 0.30 K2Cr2O7 0.159 K2Cr2O7 0.63 MgSO4 0.22 K2C2O4 0.69 K3[Fe(CN)6] 0.08 K4[Fe(CN)6] 0.05
M+:M2+:M3+=(1)6: (1/2)6: (1/3)6 ( ) ) )
3.不规则聚沉 不规则聚沉 有些溶胶加入少 量电解质时发生聚 沉;电解质增加沉 淀物又分散为溶胶; 淀物又分散为溶胶; 再增加电解质量又 再次发生聚沉, 再次发生聚沉,这 种现象称为不规则 聚沉。 聚沉。
KCl(溶液) → (AgCl)m ' n Cl − AgCl(晶体) + AgNO3 (溶液) → (AgCl)m ' n Ag +
双电层压缩
憎水性胶体
当两个胶粒相互接近以至 双电层发生重叠时, 双电层发生重叠时,就产生静 电斥力。 电斥力。 向溶液中投加电解质,溶 向溶液中投加电解质, 液中离子浓度增加, 液中离子浓度增加,扩散层的 厚度将减小。 厚度将减小。 加入的反离子与扩散层原有 反离子之间的静电斥力将部分 反离子挤压到吸附层(紧密层) 反离子挤压到吸附层(紧密层) 从而使扩散层厚度减小。 中,从而使扩散层厚度减小。
相关主题