题9.1:已知铜的摩尔质量1mol g 75.63-⋅=M ,密度3cm g 9.8-⋅=ρ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度2m mm A 0.6-⋅=j ,求此时铜线内电子的漂移速率d v ;(2)在室温下电子热运动的平均速率是电子漂移速率d v 的多少倍?题9.1分析:一个铜原子的质量A /N M m =,其中A N 为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度m n /ρ=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m nev j =。
从而可解得电子的漂移速率d v 。
将电子气视为理想气体,根据气体动理论,电子热运动的平均速率 e8m kTv π=其中k 为玻耳兹曼常量,e m 为电子质量。
从而可解得电子的平均速率与漂移速率的关系。
解:(1)铜导线单位体积的原子数为M N n /A ρ=电流密度为m j 时铜线内电子的漂移速率14A m m d s m 1046.4//--⋅⨯===e N M j ne j v ρ(2)室温下(K 300=T )电子热运动的平均速率与电子漂移速率之比为8edd 1042.281⨯≈=m kTv v v π 室温下电子热运动的平均速率远大于电子在稳恒电场中的定向漂移速率。
电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加。
考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子。
实验证明电信号是通过电磁波以光速传递的。
题9.2:有两个同轴导体圆柱面,它们的长度均为m 20,内圆柱面的半径为mm 0.3,外圆柱面的半径为mm 0.9。
若两圆柱面之间有μA 10电流沿径向流过,求通过半径为mm 0.6的圆柱面上的电流密度。
题9.2分析:如图所示,是同轴柱面的横截面。
电流密度j 对中心轴对称分布。
根据稳恒电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rL I j π2/=解:由分析可知,在半径mm 0.6=r 的圆柱面上的电流密度25m A 1033.12/--⋅⨯==rL I j π题9.3:有两个半径分别为1R 和2R 的同心球壳。
其间充满了电导率为γ(γ为常量)的介质,若在两球壳间维持恒定的电势差U 。
求两球壳间的电流。
题9.3分析:可采用两种方法求解,(1)根据欧姆定律的微分形式E j γ=和电流S j d ⋅=⎰I 。
球壳间的电场分布应为球对称。
假设内、外球壳分别均匀带电荷Q ±,则球壳间的电场强度r 2r 04e E r Q επε=,两球壳的电势差⎰⋅=21d R R U r E另外球壳间的电流密度j 沿径向且在球面上均匀分布,因此,两球壳间的电流24d r j I π⋅=⋅=⎰S j由上述关系可解得两球壳间的径向电流。
(2)在求得球壳间径向电阻的基础上,由欧姆定律求球壳间的径向电流。
在介质中任取一同心球壳作微元,球壳面积为24r π,厚度为r d ,依照电阻的定义,该微元内、外表面间的电阻24d 1d r rR πγ=导体球壳间的总电阻⎰=21d R R R R 。
再由欧姆定律求出径向电流。
解1:假设内、外球壳分别带电Q ±,两球壳间的电势差)11(4d 21r021R R Q U R R -=⋅=⎰επεr E 球壳间的电流强度1221244d R R R R U r I -=⋅=⋅=⎰γππγE S j解2:导体球壳间的总电阻)11(414d 121221R R r r R R R -==⎰πγπγ 由欧姆定律,径向电流强度12214R R R R U R U I -==γπ题9.4:同样粗细的碳棒和铁棒串联,能使两棒的总电阻不随温度而变化。
问此时两棒的长度比应为多少?解:设室温下两棒的电阻分别为CR和FeR,温度改变T∆后电阻分别为)1()1(FeFeFeCCCTRRTRR∆+='∆+='αα式中Cα和Feα分别为室温时碳和铁的电阻温度系数,查表得碳和铁的电阻率和电阻温度系数分别为13C17Fe14C15CK100.5m100.1K105m105.3-------⨯=⋅Ω⨯=⨯-=⋅Ω⨯=αραρ;;依照题意,串联后的总电阻不随温度改变,故有FeFeCC=+ααRR又根据电阻的定义SlRρ=,在两导线截面相同的条件下,则有2CCFeFeFeC1086.2//-⨯=-=ραραll题9.5:如图所示,截圆锥体的电阻率为ρ,长为l,两端面的半径分别为1R和2R。
试计算此锥体两端面之间的电阻。
题9.5分析:对于粗细不均匀导体的电阻,不能直接用SlRρ=计算。
垂直于锥体轴线截取一半径为r、厚为x d的微元,此微元电阻2ddrxRπρ=,沿轴线对元电阻Rd积分,即得总电阻⎰=RR d。
解:由分析可得锥体两端面间的电阻⎰=2drxRπρ(1)由几何关系可得)/()(/212RRRrlx--=则rRRlx dd21-=(2)将式(2)代人式(1)得21221d)(12RRlrrRRlR RRπρπρ=-=⎰题9.6:一同轴电缆,其长m105.13⨯=L,内导体外径mm0.11=R,外导体内径mm0.52=R,中间填充绝缘介质。
由于电缆受潮,测得绝缘介质的电阻率降低到m104.65⋅Ω⨯。
若信号源是电动势V24=ε,内阻Ω0.3i=R的直流电源,求在电缆末端的负载电阻kΩ0.1=R上的信号电压为多大?题9.6分析:由于电缆受潮,同轴电缆内、外导体间存在径向漏电电阻R,它与负载电阻R 构成并联电路,其等效电路图如图所示。
根据全电路欧姆定律可求出负载上的信号电压。
解:同轴电缆的径向漏电电阻12ln2RRLRπρ=它与负载电阻并联后的总电阻为Ω=+='5.98RRRRR由全电路的欧姆定律∑+'=)(rRIε,可得负载上的信号电压V3.23=+''='=rRRIRUε比较电缆受潮前后负载的端电压,可知电压下降了V7.0。
题9.7:有一平板电容器,其电容μF0.1=C,极板间介质的电阻率mΩ100.213⋅⨯=ρ,相对电容率0.5r=ε,求该电容器两极间的电阻值。
题9.7解:根据电阻的定义,两极板间的电阻SdRρ=而充满均匀介质的平板电容器,其电容dSC/rεε=,由上述两式可得Ω1085.88r0⨯==CRεερ题9.8:如图所示,在两块薄铜板之间,放置内、外半径分别为1r 和2r 的环形硅,cm 0.5cm,0.3,cm 80.021===h r r ,如在两极间加V 200的电势差,求电路中的电流。
题9.8解:根据电阻的定义,环形硅的电阻)(2122r r hR -=πρ查表知硅的电阻率m Ω104.62⋅⨯=ρ,在恒定电压U 的作用下,硅中的电流为mA 4.16A 1064.1)(22122=⨯=-==-U lr r R U I ρπ题9.9:在相距km 0.15的A 、B 两地之间地下,铺设有一条双股电缆,其中一根导线因某处绝缘层破损触地而发生故障。
检修人员用图所示装置可找出故障点位置。
该装置中R R ,Ω1000.230⨯=为可变电钮。
现通知A 地工作人员将该对电缆短接,测得检流计G 没有电流时电阻Ω1086.13⨯=R 。
求电缆损坏处到B 的距离x 。
(电缆每千米直流阻抗为Ω150 )题9.9分析:以接地点P 为分割点,将电缆分成AP 、 PB 两段,它们的电阻分别1R 、2R ,并与测试装置构成如图所示的电桥电路。
当电桥平衡时(即检流计G 内没有电流流过),有0201::)(R R R R R =+由于1R 、2R 均与电缆长度成正比。
参照单位长度电缆的直流电阻,可求得故障处到B 的距离x 。
解:设η为单位长度电缆线的直流电阻,L 是A 、B 两地间的电缆长度,由电桥平衡条件ηη)2(x L R x -=+ 解得km 8.82=-=ηRL x 题9.10:如图所示,V 0.221==εε,内阻Ω8.4,Ω0.5,Ω1.021i2i1====R R R R 。
试求:(1)电路中的电流;(2)电路中消耗的功率;(3)两电源的端电压。
题9.10解:(1)由闭合电路的欧姆定律可得电路中的电流i2i12121=++++=R R R R I εε(2)电路中消耗的功率为W 6.1)(i2i1212=+++=R R R R I N(3)电源的端电压分别为V96.1V 96.1i222i111=-==-=IR U IR U εε题9.11:在如图所示的电路中,V 0.2,V 0.621==εε,,Ω0.4,Ω0.3,Ω0.2,Ω0.14321====R R R R 求:(1)流过各电阻的电流;(2)A 、B 两点的电势差AB U ? 题9.11解:(1)取电流和回路绕行方问如图所示,由闭合电路欧姆定律,得A 85.0)/(43432121=+++-=R R R R R R I εε流过各电阻的电流分别为 A 85.021===I I I A 49.04343=+=I R R R IA 36.043334=+=-=I R R R I I I(2)由一段含源电路的欧姆定律得 V 2.511AB -=-=εIR U(注:文档可能无法思考全面,请浏览后下载,供参考。
)。