血管的三维重建
问题分析
现在我们可以知道:血管可以看成无穷多个等 径并且圆心相距无穷小的球包络面组成。因此, 切片上的二维图形就应该是由无穷多个球被截 的圆叠加而成。这些圆都是被截球的大圆或者 小圆,其半径有一极大值R,R同时也是球的半 径。这样一个半径R的圆是球心在切片平面内 的球被截而成的,其圆心为中轴线与切片平面 的交点。假设,中轴线与每张切片有且只有一 个交点,所以每一张切片图上包含且只包含一 个半径为R的圆。我们只要找到这个圆,就可 以定出中轴线与切片平面交点的坐标,用这些 交点坐标我们可以建立起中轴线的空间形态。
问 题 的 提 出
Z=0Z=1Fra bibliotekZ=49Z=50
Z=98
Z=99
血管三维重建的背景
这问题的来源于序列图象的计算机三维重建。 序列图象的计算机三维重建是应用数学和计算 机技术在医学与生物学领域的重要应用之一; 是医学和生物学的重要研究方法,它帮助人们 由表及里、由浅人深地认识生物体的内部性质 与变化,理解其空间结构和形态。 血管是血液流通的通路,其在生命活动中的重 要性是众所周知,诊断师在临床中经常需要了 解血管的分布、走向等重要信息。理想的血管 可以看成是粗细均匀的管道,如何建立其数学 模型是图象三维重建的重要一环。
模型的建立及求解
为了减小搜索的区域,找到切片中血管所在的最小区 域,然后在此区域里逐个象素的搜索。
模型的建立及求解
%先寻找最小区域 [M N]=size(Im);xmin=1;xmax=N; for j=1:N for i=1:M if(Im(i,j)>0) xmax=j; break; end end end for j=N:-1:1 for i=1:M if(Im(i,j)>0) xmin=j; break; end end end
血管三维重建的背景
问题分析
我们将说有100张切片按其在空间的位置 叠加起来,已经可以看到大体的血管的 三维结构。
问题分析
将100张图片叠加在XOY平面,形成血管 在XOY平面上的投影,可以看出血管是 由一系列圆移动形成的。
问题分析
对于每一个切片,仔细观察可以发现: 切片也是由一系列半径不同的圆移动形 成的。
模型的假设
血管粗细均匀,其表面由球心沿某一曲线〔称 为中轴线)且半径固定的球滚动包络而成。 假设管道中轴线与每张切片有且只有一个交点, 球半径固定,切片间距以及图像象素尺寸均为 1。 切点间距尺寸为1,则假设相继切片间连续, 即相继的切片与中轴线的交点是连续的。
模型的假设(更深一层次)
血管粗细均匀的充要条件是各法截面圆之间不相交,这样 可保证各法截面圆周上的点全落在包络面上 (直观地说, 粗细均匀就是过中轴 上的任意点P处用垂直于 在P点切 线方向的刀片切血管得到的截面是以P为圆心以固定的常数 r为半径的圆,称此为过P点的法截面圆)。为此要求 满足 下列条件: 中轴线 上每一点处的曲率半径大于r 中轴线最窄处的宽度d大于2r 中轴线两端点处的法截面圆不相交。 中轴线 上最窄处的宽度d可以这样决定:当 上两点p,q 在这两点处的切线时,或仅垂直在其中一 的连线垂直于 点处的切线而另一点为 的端点时,称p,q为相关点对。 上可以没有相关点对,也可以不止一对相关点对。如果 上无相关点对,则认为d为无穷大,否则取d为相关点对中 的两点间距离的最小值。
问题的提出
现有某管道的相继100张平行切片图象,记录了管道与切片的 交。图象文件名依次为0.bmp、1.bmp、…、 99.bmp,格式均为 BMP ,宽、高均为512 个象素(pixel )。为简化起见,假设: 管道中轴线与每张切片有且只有一个交点;球半径固定;切片 间距以及图象象素的尺寸均为1。 取坐标系的Z轴垂直于切片,第1张切片为平面Z=0,第100张切 片为平面Z=99 。Z=z 切片图象中象素的坐标依它们在文件中出 现的前后次序为: (-256,-256,z)(-256,-255,z)…(-256,255,z), (-255,-256,z)(-255,-255,z)…(-255,255,z), …… ( 255,-256,z)( 255,-255,z)…(255,255,z)。 试计算管道的中轴线与半径,给出具体的算法,并绘制中轴线 在XY、YZ、ZX平面的投影图。
目录
问题的提出 血管三维重建的背景 问题分析 模型的假设 模型的建立及求解 模型的检验
问题的提出
断面可用于了解生物组织、器官等的形态。例 如,将样本染色后切成厚约1m m的切片,在显 微镜下观察该横断面的组织形态结构。如果用 切片机连续不断地将样本切成数十、成百的平 行切片, 可依次逐片观察。根据拍照并采样 得到的平行切片数字图象,运用计算机可重建 组织、器官等准确的三维形态。 假设某些血管可视为一类特殊的管道,该管道 的表面是由球心沿着某一曲线(称为中轴线) 的球滚动包络而成。例如圆柱就是这样一种管 道,其中轴线为直线,由半径固定的球滚动包 络形成。
模型的建立及求解
通过以上分析,整个模型的建立分为两个部分:滚球 半径的确定和中轴线的确定。 确定滚球半径的方法有很多:最笨也是最容易想到的 方法就是枚举的方法—— 求每张切片的图象内的最大 内切圆的圆心时,以位于图象内每一个象素为圆心作 圆.遍历所有象素点后再作确定。此种方法,思想简 单,程序简单,但计算量大。 1)平均法 求出每张横断面团象内的最大内切圆半径, 再取r为它们的算术平均值。 2) 抽样法 由于已知 滚动球半径是常数,取前几片切片图象内的最大内切 圆半径的平均值为r的值。 3) 极大似然法 在求得 每一片切片图象内的最大内切圆半径后,进行统计, 以出现频率最大的值为r的值。
问题分析
由以上分析,做出如下的判断: 每个切片中 包含一系列滚球在平面上切出的圆, 其中最大的圆为滚球半径,圆心位于血管的中 轴线上。 血管中轴线在XOY上的投影为所有切片在XOY 平面上叠加形成的阴影的中心线。 在求得所有切片的最大圆圆心后,拟和这些点 形成的曲线就是中轴线。 重建后血管形状应和前面100张切片直接形成 的形状一致(用于进行模型的检验)。