当前位置:文档之家› TFT薄膜晶体管的工作原理

TFT薄膜晶体管的工作原理

TFT薄膜晶体管的工 作原理
本章主要内容
6.1 薄膜晶体管的半导体基础 6.2 MOS场效应晶体管 6.3 薄膜晶体管的工作原理
6.4 薄膜晶体管的直流特性
6.5 薄膜晶体管的主要参数
6.1 TFT的半导体基础
本征半导体及杂质半导体 能带、施主与受主
载流子及散射
电导现象、迁移率、电导率
6.1 TFT的半导体基础
VG>0
6.3 薄膜晶体管的工作原理
输出特性曲线
2.5x10 2.0x10
-6
线性区
VGS4
-6
饱和区
夹断
IDS(A)
1.5x10 1.0x10 5.0x10
-6
饱和区 线性区
VGS3 VGS2 VGS1
-6
-7
0.0
0
5
10 15 VDS(V)
20
沟道区
夹断区
6.4 薄膜晶体管的直流特性 线性区
3 1 2 1
4
非晶硅中有大量的缺陷(1.悬键;2.弱键;3.空位;4.微孔)
6.3 薄膜晶体管的工作原理 非晶硅半导体材料的特点
扩展态 局域态
EC E 导带 EC EV 价带 (b) g(E) 扩展态 (a)
EC'
E EC EA EF EB
E 扩展态
局域态
EV
扩展态 (c) g(E)
6.3 薄膜晶体管的工作原理 TFT的工作原理
-5
0
VGS(V)
5
10
15
20
25
6.4 薄膜晶体管的直流特性 迁移率和阈值电压
1.6x10 -3 1.4x10 -3 1.2x10 -3 1.0x10 -4 8.0x10 -4 6.0x10 -4 4.0x10 -4 2.0x10 0.0
-4 -3
I DS
测试曲线1/2 拟合曲线
B
W C ox VGS VTH 2L
IDS (A )
1/2
1/2
B
W C ox 2L
A B *VTH
VTH A B
-2.0x10
-15 -10 -5
0
A 5 10
15
20
25
2B 2 W L Cox
VGS(V)
利用饱和区的漏极电流公式,对转移特性曲线做IDS1/2~VGS曲线,对直线段进行拟合,
(空穴) (电子) (空穴) (电子)
电导率:反映半导体材料导电能力的物理量。 它由载流子密度和迁移率来决定。
6.1 TFT的半导体基础
迁移率
载流子在电场中的漂移速度: vd = [(±q) /m*] E = E 上式表明,载流子的漂移速度与外电场平行,且成比例。比例系数通常称 为载流子的迁移率。


-漏
p+
n type Si 衬底
p+
6.2 MOS场效应晶体管
MOSFET工作原理
当Vs=0,Vd<0时:Vg<0,空穴反型 pn结连在一起,形成导电沟道
栅 源
电流很大 开态
-
-漏
p+
n type Si 衬底
p+
6.2 MOS场效应晶体管
MOSFET工作原理小结
1.TFT属于半导体器件中—— MOS场效应晶体管 2.MOSFET表现开关作用依靠的电极是—— 栅极
6.4 薄膜晶体管的直流特性 转移特性曲线
10 10 10 10
-5 -6 -7 -8 -9
线性区 饱和区 线性区
IDS(A)
10 10 10 10 10
亚阈值区
截止区
VDS=5V VDS=10V VDS=15V VDS=20V
饱和区 亚阈值区 截止区
-10 -11 -12 -13
-15 -10
迁移率
6.2 MOS场效应晶体管
晶体管 双极型晶体管 场效应晶体管 JFET MOSFET——TFT
n型衬底 两个p区 SiO2绝缘层 金属铝 P型导电沟道 p+
n type Si
衬底 栅 源 漏
p+
p-MOSFET
6.2 MOS场效应晶体管
p-MOSFET晶体管 垂直方向—— 栅控器件 水平方向—— 电导器件
VS=0 VD>0
Source Insulator Gate
Drain a-Si:H
Source Insulator
Drain a-Si:H
Source Insulator Gate
Drain a-Si:H
-- - ---
-- - --glass
Gate glass
++++++
glass
VG<0
VG=0
0
d
0
P+
n
P+
n型硅
P+
p
P+
6.2 MOS场效应晶体管
MIS结构定义
MOS结构相当于一个电容 金属与半导体之间加电压 在金属与半导体相对的两个表面上就充 上等量异号的电荷 在金属一侧,分布在一个原子层厚度内 在半导体一侧,分布在空间电荷区 d
金属
绝缘层
n型硅 欧姆接触
半导体
6.2 MOS场效应晶体管
6.4 薄膜晶体管的直流特性 饱和区
x z y
L W 源 漏 半导体层 绝缘层 栅
当VDS=Vsat时,在漏极处沟道电荷为零,这时沟道开始夹断;
当VDS继续增大,增加的电压将降落到夹断区上,夹断区是已耗尽空穴 的空间电荷区,对沟道电流没有贡献。
I DS
W 2 C ox VGS VTH 2L
6.1 TFT的半导体基础 n型半导体和p型半导体
价电子填补空位 多余价电子 空穴 空位
Si
Si P Si
Si Si
Si
B Si B Si
Si Si
Si Si
Si Si
自由电子的数量大大增加 N 型半导体
空穴的数量大大增加 P 型半导体
6.1 TFT的半导体基础
费米能级
Ec EF Ev 本征半导体 Ei Ec EF Ei Ec Ei EF Ev p型半导体
从外推曲线斜率可以提取出迁移率μ和阈值电压VTH。
6.4 薄膜晶体管的直流特性 亚阈值区
10 10 10 10
-5 -6 -7 -8 -9
10 10 10 10 10
-10 -11 -12 -13
dVGS 1 S B d (log I DS )
S
-5 0 VGS(V) 5 10 15 20 25
Gradual channel approximation
2 VDS W C ox VGS VTH VDS L 2
I DS
当VDS很小时,漏源之间存在贯穿全沟道的导电的N型沟道。
当VDS增加时,栅极与漏极的电位差减少,在接近漏极处,沟道电荷 逐渐减少;
6.1 TFT的半导体基础
电导现象
I
R
在半导体样品两端加电压,其内部则产生电场。载流子被电场所加速 进行漂移运动,在半导体中引起一定电流,这就是电导现象。
6.1 TFT的半导体基础
电导率
空穴和电子的速度: vp = p E vn = n E 空穴和电子的电导率: p = q p p n = q n n
亚阈值斜率S,从Log IDS 对VGS 图提取;
半导体类型,P-沟道 或 n-沟道也可以从IDS-VDS or IDS-VGS 图获得.
迁移率(cm2/Vs) :不仅反映导电能力的强弱,而且直接决 定载流子漂移和扩散运动的快慢。
6.1 TFT的半导体基础
小结
1.非晶硅薄膜晶体管—— 弱n型半导体
2.薄膜晶体管的能带——
费米能级接近禁带中心 在禁带中心线之上
3.主导薄膜晶体管的半导体现象—— 电导现象 4.影响薄膜晶体管性质参数——
IDS(A)
(V/dec)
-15 -10
亚阈值斜率(S)可以从对数坐标下的转移特性曲线中提取。在对数坐标下,对 亚阈值区进行直线拟合,拟合的直线斜率为B,亚阈值斜率S为直线斜率的倒数
6.4 薄膜晶体管的直流特性
参数小结
迁移率 μ,从 IDS1/2 对 VGS 图 提取;
阈值电压VTH,从 IDS1/2 对 VGS 图提取; 开关比Ion/Ioff, 从 Log IDS 对VGS 图提取;
自由电子 共价键 空穴
本征半导体
本征半导体就是完 全纯净的、具有晶 体结构的半导体。
本征半导体中自由 电子和空穴的形成 Si Si
Si
Si
6.1 TFT的半导体基础
电子移动方向
本征半导体
可见在半导体中有
Si Si
S电。
空穴移动方向
Si Si
Si
Si
外电场方向
MIS结构表面电荷的变化
Vg>0
Vg<0 金属
绝缘层 d + + d
Vg<<0
d
+
+
n型硅
欧姆接触
半导体
n型硅
+ + n型硅
+
+
(a)积累
(b)耗尽
(c)反型
6.2 MOS场效应晶体管
MOSFET工作原理
当Vs=0,Vd<0时:Vg=0,pn结反偏 电流很小 关态
Vg>0,电子积累,pn结反偏
3.MOSFET表现电导现象依靠的电极是—— 源、漏电极
4.MOSFET导电沟道是——
相关主题