当前位置:文档之家› 高等数学-课后习题答案第十二章

高等数学-课后习题答案第十二章

习题十二1.写出下列级数的一般项:(1)1111357++++L ;(2)2242468x x ++++⋅⋅⋅⋅L ;(3)35793579a a a a -+-+L ;解:(1)121n U n =-;(2)()2!!2nn xU n =;(3)()211121n n n a U n ++=-+;2.求下列级数的和:(1)()()()1111n x n x n x n ∞=+-+++∑;(2)1n ∞=∑;(3)23111555+++L;解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭从而()()()()()()()()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ⎛-+-=+++++++⎝⎫++-⎪+-++++⎭⎛⎫-= ⎪++++⎝⎭L因此()1lim 21n n S x x →∞=+,故级数的和为()121x x + (2)因为n U =-从而11n S =-+-+-++-=-=+-L所以lim 1n n S →∞=1(3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦L从而1lim 4n n S →∞=,即级数的和为14.3.判定下列级数的敛散性:(1)1n ∞=∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+L L ;(3) ()23133222213333n n n--+-++-L L ;(4)15+++L L ;解:(1)1n S =+++=L从而lim n n S →∞=+∞,故级数发散.(2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++- ⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭L从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵n U =lim 10n n U →∞=≠,故级数发散.4.利用柯西审敛原理判别下列级数的敛散性:(1)()111n n n +∞=-∑; (2)1cos 2n n nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n p n n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+L L L L当P 为奇数时,()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+L L L L因而,对于任何自然数P ,都有12111n n n p U U U n n ++++++<<+L ,∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n p U U U ε++++++<L 成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛.(2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n pn n n p n n n p n p n p n U U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<L L L于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P 都有12n n n p U U U ε++++++<L 成立,由柯西审敛原理知,该级数收敛.(3)取P =n ,则()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+>L L L从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++>L ,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性.(1)()()111465735n n ++++⋅⋅++L L;(2)22212131112131n n +++++++++++L L(3)1πsin 3nn ∞=∑;(4)1n ∞=;(5)()1101nn a a ∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵()()21135n U nn n =<++而211n n∞=∑收敛,由比较审敛法知1nn U∞=∑收敛.(2)∵221111n n n U n n n n++=≥=++而11n n ∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n →∞→∞=⋅=而1π3nn ∞=∑收敛,故1πsin 3n n ∞=∑也收敛. (4)∵321n U n=<=而3121n n∞=∑收敛,故1n ∞=收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111n n a ∞=+∑也收敛.当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散.当0<a <1时,1lim lim 101n nn n U a →∞→∞==≠+,级数发散.综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021lim ln 2x x x →-=知121limln 211nx n →∞-=<而11n n ∞=∑发散,由比较审敛法知()1121n n ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1)213n n n ∞=∑; (2)1!31nn n ∞=+∑;(3)232333331222322nnn +++++⋅⋅⋅⋅L L ;(1)12!n n n n n ∞=⋅∑ 解:(1)23n nn U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<,由比值审敛法知,级数收敛.(2)()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3)()()11132lim lim 2313lim 21312n n n n nn n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=>所以原级数发散.(4)()()1112!1lim lim 2!1lim 21122lim 1e 11n n n n nn n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1)1531nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫ ⎪-⎝⎭∑;(4)1nn n b a ∞=⎛⎫ ⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim1313n n n n →∞==>+,故原级数发散.(2)()1lim01ln 1n n n →∞==<+,故原级数收敛.(3)121lim 1931nn n n n -→∞⎛⎫==< ⎪-⎝⎭,故原级数收敛.(4)lim n n n b b a a →∞==,当b <a 时,b a <1,原级数收敛;当b >a 时,ba >1,原级数发散;当b =a 时,ba=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1-+L ; (2)()()1111ln 1n n n ∞-=-+∑; (3) 2341111111153535353⋅-⋅+⋅-⋅+L;(4)()21121!nn n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6)()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑L .解:(1)()11n n U -=-,级数1nn U ∞=∑>,0n =,由莱布尼茨判别法级数收敛,又11121nn n Un∞∞===∑∑是P <1的P 级数,所以1nn U∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1limln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++所以,1nn U∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n nn n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1nn U∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n n U U n ++→∞→∞==+∞+.故可得1n nU U +>,得lim 0n n U →∞≠,∴lim 0n n U →∞≠,原级数发散.(5)当α>1时,由级数11n n α∞=∑收敛得原级数绝对收敛.当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim 0n n U →∞≠,所以原级数发散.(6)由于11111123n n n ⎛⎫⋅>++++ ⎪⎝⎭L 而11n n ∞=∑发散,由此较审敛法知级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑L 发散.记1111123n U n n ⎛⎫=⋅++++ ⎪⎝⎭L ,则 ()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>L L L即1n n U U +>又01111lim lim 12311d n n n n U n n x n x →∞→∞⎛⎫=++++ ⎪⎝⎭=⎰L由0111lim d lim 01t t t t x t x →+∞→+∞==⎰知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑L 收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1)()1!1nn x n ∞=-∑,x ∈[-3,3]; (2)21n n x n∞=∑,x ∈[0,1];(3)1sin 3n n nx ∞=∑,x ∈(-∞,+∞); (4)1!nxn e n -∞=∑,|x |<5;(5)1n ∞=x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx nn ≤,x ∈[0,1],而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛.(3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛.(4)因为5!!nnx ee n n -≤,x ∈(-5,5),由比值审敛法可知51!n n e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)531n≤,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1nn Vx ∞=∑在Ⅰ上一致收敛时,级数()1nn Ux ∞=∑在这区间Ⅰ上也一致收敛.证:由()1nn Vx ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1nn Ux ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知()1nn Ux ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…;(2)1!nn x n n ∞=⎛⎫ ⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112n n x n n ∞=-⋅∑;解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11nn n∞=-∑,由lim(1)0nx nn →-≠知级数1(1)nn n∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦所以收敛半径1eR ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e n nn n n ∞=∑;应用洛必达法则求得()10e e1lim 2x x x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim 21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+=所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n →∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1).(4)令t =x -1,则级数变为212nn t n n ∞=⋅∑,因为()()2122lim lim 1211n n n n a n n a n n ρ+→∞→∞⋅===⋅++所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112nn n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2]12.利用幂级数的性质,求下列级数的和函数:(1)21n n nx∞+=∑; (2)22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx ++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S nx x ∞-==∑则()1011xn n x S x x x ∞===-∑⎰于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x ++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数2121n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()212011n n S x x x ∞='==-∑,故()1011d ln 21xx S x x x +'=-⎰即()()1111ln 021xS S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x +==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)f (x )=ln(2+x ); (2)f (x )=cos 2x ;(3)f (x )=(1+x )ln(1+x );(4)()2f x =;(5)()23xf x x =+; (6)()()1e e 2x xf x -=-;(7)f (x )=e x cos x ; (8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111nnn x x n ∞==+-+∑,(-1<x ≤1) 故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2) 因此()()()110ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2)(2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn xx n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n nnn n n x x x n n ∞∞==⋅==--∑∑所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞)(3)f (x )=(1+x )ln(1+x )由()()()1ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()11200111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()22f x x ==()()()21!!2111!!2n nn n x n ∞=-=+-∑(-1≤x ≤1)故()()()()221!!2111!!2nn n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1)(5)()()()(220211131313313nn n n nn n x f x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞) 得()01e!n n xn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部,而()()[]()10002011!1!ππcos sin !44ππ2cos sin !44n xi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎤⎫=+⎪⎥⎭⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑取上式的实部.得20π2cos4cos !nx nn n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2)14.将()2132f x x x =++展开成(x +4)的幂级数. 解:21113212x x x x =-++++ 而()()()011113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑ 所以()()()()()2110011013244321146223n nn n n n n n n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()f x =(x -1)的幂级数.解:因为()()()()()211111111!2!!m nm m m m m m n x x x x x n ---+=++++++-<<L L L所以()()[]()()()3221133333331121222222211111!2!!n f x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---L L L(-1<x -1<1)即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!nnn nn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑L L L 16.利用函数的幂级数展开式,求下列各数的近似值:(1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x xn -+⎛⎫=+++++ ⎪--⎝⎭L L ,x ∈(-1,1) 令131x x +=-,可得()11,12x =∈-,故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-L L又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+L L L故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯.因而取n =6则35111111ln 32 1.098623252112⎛⎫=≈++++ ⎪⋅⋅⋅⎝⎭L(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-L L∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d x x x ⎰(误差不超过0.001)的近似值.解:由于()3521arctan 13521n n x x x x x n +=-+-++-+L L ,(-1≤x ≤1)故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x xx n x x xx ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰L L L L而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈.因此0.5350arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑; (2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑;(3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnn n nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭而()22211221lim lim 10111nnn n n n n n n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥ ⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn nn∞=⎛⎫ ⎪+⎝⎭∑发散,由比较审敛法知原级数发散.(2)∵2cos 3022n nnx n n ⎛⎫ ⎪⎝⎭<≤由比值审敛法知级数12nn n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑收敛.(3)∵()()ln ln 220313nn n n n ++<<⎛⎫+ ⎪⎝⎭由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=<知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛.19.若2lim n n n U →∞存在,证明:级数1nn U∞=∑收敛.证:∵2lim nn n U →∞存在,∴∃M >0,使|n 2U n |≤M ,即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛.20.证明,若21nn U ∞=∑收敛,则1nn U n∞=∑绝对收敛.证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21nn U ∞=∑收敛,211n n ∞=∑收敛,知22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n ∞=∑收敛,因而1nn U n∞=∑绝对收敛.21.若级数1nn a∞=∑与1nn b∞=∑都绝对收敛,则函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n nU a nx b nx a nx b nx a b x =+≤+≤+由于1nn a∞=∑与1nn b∞=∑都绝对收敛,故级数()1nnn ab ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin nn n anx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1)111nn n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12n n n x ∞=+∑;(3)()2112nn n x n ∞=-⋅∑解:(1)111limlim 11lim lim lim 22e e n n nn nn nnn n n a a n n n ρ+→∞+→∞→∞→∞→∞-==⋅+++⎛⎫=⋅⋅ ⎪++⎝⎭=⋅=∴13R ρ==,又当x =时,级数变为()111311333n nnn n n n n n ∞∞==⎛⎫⎛⎛++=±± ⎪ ++⎝⎭⎝⎭⎝⎭∑∑,因为3lim 033nn n n →∞⎛⎫+=≠ ⎪+⎝⎭所以当3x =±,级数发散,故原级数的收敛半径3R =,收敛域(-3,3).(2)111ππsin122limlim lim ππ2sin 22n n n n n n nnn a a ρ+++→∞→∞→∞====故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n →∞→∞⋅==≠. 所以当(x +1)=±2时,级数()1πsin 12n n n x ∞=+∑发散,从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3)()212121lim lim 221n n n n n na n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3.当x =-1时,级数变为()2111nn n ∞=-∑,其绝对收敛,当x =3时,级数变为211n n∞=∑,收敛.因此原级数的收敛域为[-1,3].23.将函数()0arctan d xtF t x t =⎰展开成x 的幂级数.解:由于()210arctan 121n nn t t n +∞==-+∑ 所以()()()()()20002212000arctan d d 121d 112121n xx n n n n xnnn n t t F t tx t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n n n x ∞=-+∑,x ∈[-3,+∞);(2)1n n n x∞=∑,x ∈(2,+∞);(3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113n n n x ∞=-+∑在[-3,+∞)上一致收敛.(2)当x >2时,有2n nn nx =<由1112lim 122n n n n n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n n x ∞=∑在(2,+∞)上一致收敛.(3)∀x ∈R 有()()()22224322111n n n x n n n x n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛.25.求下列级数的和函数:(1)()211121n n n x n ∞-=--∑; (2)21021n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑;(4)()11nn x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1]记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑则S 1(0)=0,()()122121111n n n S x x x ∞--='==-+∑所以()()11201d arctan 01xS S x xx x -==+⎰即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121x x x S x x x x x +'==--⎰⎰,即()()11ln 021x S S x x +-=-,S (0)=0所以()11ln21xS x x +=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n nan +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()111d e !!11nn xxn n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim 111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑, ()[]1111n n x xS x x ∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰即()()()1ln 1xSx x x x =--+当x ≠0时,()()111ln 1S x x x ⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1 (∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭)综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩U26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+27.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数.解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有 ()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰L L于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n xn ∞==--∑(x ≠n π)(2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰, ()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n===-⋅⎰⎰ (n =1,2,…)所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nxn ∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰L所以()()12112π1sin sin π2n n n f x nxn n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z ) (4)因为()cos2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()π0π12π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x n x x n x n x n n n n +⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰L所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数:(1)()()πππ42xf x x =--<<(2)()()sin 02πf x xx =≤≤解:(1)()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx xnx n n --⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰L ()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n -⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n ∞==+-∑ (-π<x <π) (2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x xx x --====⎰⎰⎰()()()()()π022ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1nn x n x x n n n n =+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰L L所以()()2124cos2ππ41n nx f x n ∞=-=+-∑(0≤x ≤2π)30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n ==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n ∞=--+=∑(0<x <π)若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰L L ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑(0≤x ≤π)31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()1101d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰L L所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑所以211π6n n ∞==∑ 32.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x xn n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰L L故()()()22121π81cosπ221n n x f x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n xx x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()102cos πd n a f x n x x=⎰,求52s ⎛⎫- ⎪⎝⎭.解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f ff +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1sin πn n s x b n x∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x=⎰(n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭.解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 21122x ⎛⎫-≤< ⎪⎝⎭; (2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩ 解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰,()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x xn n -+==--==⎰⎰L所以()()12211111cos 2π12πn n f x n xn +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰,()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn x a f x xn x n x x x xn n --==++⎡⎤=--=⎣⎦⎰⎰⎰L ()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n x b f x xn x n x x x xn n --+==++=-=⎰⎰⎰L而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑(x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2Tl T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰()()π2π222π2π22222π2211e d ed 212πe d e d 2ππsin e 2ππn T n i t li t lTT n l n n i t i t T T n i t T c u t t u t tlTh T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰故该矩形波的傅里叶级数的复数形式为()2π1πsin eπn i t Tn n h h n u t T n Tττ∞-=-∞≠=+∑(-∞<t <+∞,且3,22t ττ≠±±,…)37.设f (x )是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=e -x ,试将f (x )展成傅里叶级数的复数形式. 解:函数f (x )在x ≠2k +1,k =0,±1,±2处连续.()()()[]()()()π1π111π11211e d e e d 221e 21πe e 1121π1πsinh111πn i x l x in x ln l x n i n n c f x x xl n i n in in ------+--===-+-=⋅⋅-+-=⋅⋅-+⎰⎰故f (x )的傅里叶级数的复数形式为()()()()π21π1sinh1e 1πn in xn in f x n ∞=-∞⋅--=+∑ (x ≠2k +1,k =0,±1,±2,…)38.求矩形脉冲函数(),00,A t T f t ≤≤⎧=⎨⎩其他的傅氏变换 解:()()()01e ed ed i x Ti xi xA F f t A t t i ωωωωω-+∞---∞-===⎰⎰39.求下列函数的傅里叶积分:(1)()e ,00,0t t f t t -⎧≥=⎨<⎩。

相关主题