天线CAD大作业学院:电子工程学院专业:电子信息工程微带天线设计一、设计要求:(1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。
微波基板介电常数为r ε= 6,厚度H ≤5mm ,线极化。
总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。
(2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。
二、设计步骤计算天线几何尺寸微带天线的基板介电常数为r ε= 6,厚度为h=5mm,中心频率为f=1.15GHz,s m /103c8⨯=天线使用50Ω同轴线馈电,线极化,则(1)辐射切片的宽度21)21(2-+=r f c w ε=69.72mm(2)有效介电常数21)121(2121r e-+-++=whr εεε=5.33(3)辐射缝隙的长度)8.0/)(258.0()264.0/)(3.0(h412.0+-++=∆h w e h w e L εε=2.20(4)辐射切片的长度L ef c L ∆-=22ε=52.10mm(5)同轴线馈电的位置L1 21)121(2121)(re -+-++=Lh r r L εεξ=5.20 )11(21reL L ξ-==14.63mm 三、HFSS 设计 (1)微带天线建模概述为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:微带天线的HFSS设计模型如下:立体图俯视图模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。
介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。
对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。
使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。
模型建立好后,设置辐射边界条件。
辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。
(2) HFSS设计环境概述*求解类型:模式驱动求解。
*建模操作①模型原型:长方体、圆柱体、矩形面、圆面。
②模型操作:相减操作*边界条件和激励①边界条件:理想导体边界、辐射边界。
②端口激励:集总端口激励。
*求解设置:①求解频率:1.15GHz。
②扫频设置:快速扫描,频率范围:1~1.3GHz。
*Optimetrics①参数扫描分析。
②优化设计。
*数据后处理:S参数扫频曲线、VSWR、天线方向图、天线参数。
(3)仿真结果由图得天线的谐振频率为1.11GHz,不是1.15GHz。
需要进行优化设计。
①先进行参数扫描分析a、分析中心频率与辐射切片长度L0的变化关系,扫描分析范围为:49mm~54mm,扫描步进为0.2mm仿真结果:发现当L0=50mm时,谐振频率为1.15GHz。
b、分析1.15GHz谐振频点处回波损耗与同轴线馈电点位置L1的变化关系,扫描分析范围为:0mm~19mm,扫描步进为1mm仿真结果:发现L1=10mm时,回波损耗值最小,阻抗匹配最好。
②优化设计优化结果得到:当L0=49.8mm时,L1=10mm时,符合要求。
③查看优化后的天线性能a、VSWR分析结果在1.15GHz处,VSWR值为1.3832<2,符合要求。
b、xz和yz截面上的增益方向图从图得出:最大辐射方向为 00==θϕ、,即辐射切片的正上方,最大增益约为5.7dB 。
c 、三维增益方向图拓展要求:圆极化微带天线设计一、微带天线实现圆极化的方法采用特殊的馈电方式,可以获得圆极化的矩形切片微带天线。
圆极化的关键是激励起两个极化方式正交的线极化波,当这两个模式的线极化波幅度相等,相位相差90度,就能得到圆极化波的辐射。
矩形微带天线获得圆极化特性的馈电方式有两种,一种是单点馈电,另一种是正交双馈。
当同轴线的馈电点位于辐射切片的对角线位置时,可以激发TM 01和TM 10两个模式,这两个模式的电场方向互相垂直。
在设计中,让辐射切片的长度L 和宽带W 相等,这样激发的TM 01和TM 10两个模式的频率相同,强度相等,而且两个模式电场的相位差为0,若辐射切片的长度为Lc ,我们微调谐振长度略偏离谐振,即一边长度为Lc+a ,另一边长度为Lc-a ,前者对应一个容抗Y1=G-jB,后者对应一个感抗Y1=G+jB ,只要调整a 的值,使得每一组的电抗分量等于阻抗的实数部分,即B=G ,则两阻抗大小相等,相位分别为-45度和45度,这就满足了圆极化条件,从而构成了圆极化微带天线。
其极化旋向取决于馈电点的接入位置。
当馈电点在如下图中的所示的A 点时,产生右旋圆极化波,在B 点位置时,产生左旋圆极化波。
Kalio 和Coffey 研究证明,理论上当L/W=1.029,即a=0.0143Lc ,TM 01和TM 10两个模式的相位差为90度。
另外,由实际经验可得到,此结果的50欧姆馈电点位于辐射切片对角线上,且馈电点和辐射切片顶点的距离d p 在(0.35~0.39)d 之间。
假设馈电点到辐射切片的中心距离为L1,则L1在(0.11~0.15)Lc 之间。
二、设计要求工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。
微波基板介电常数为r ε= 6,厚度H ≤5mm ,左旋圆极化。
总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等,并给出轴比计算结果。
三、设计步骤(1)计算天线辐射切片的初始尺寸 微带天线的基板介电常数为r ε= 6,厚度为h=5mm,中心频率为f=1.15GHz,s m /103c8⨯=辐射切片的宽度21)21(2-+=r f c w ε=69.72mm有效介电常数21)121(2121r e-+-++=wh r εεε=5.33 辐射缝隙的长度)8.0/)(258.0()264.0/)(3.0(h412.0+-++=∆h w e h w e L εε=2.20辐射切片的长度L ef c L ∆-=22ε=52.10mm则:辐射切片初始尺寸为:L=W=Lc=52.10mm ,并设置微调长度值a=0.0143Lc ,以产生圆极化波。
(2)估算输入阻抗为50Ω的同轴线馈电位置取0.15倍的Lc,计算得出馈电点在x 、y 方向离辐射切片的中心距离都为7.82mm 。
四、HFSS 设计 (1)微带天线建模概述为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:变量H 表示基板的厚度,变量L0和W0分别表示辐射切片的长度和宽度,变量L1和L2分别表示同轴线馈电点在x 、y 方向离辐射切片中心的距离。
变量Lc 表示谐振频率为1.15GHz 时所对应的辐射切片长度值,其初始值为52.10mm ,Delta 表示辐射切片的微调长度值,其初始值为0.0143*Lc 。
要想实现圆极化,L0=Lc+Delta,W0=Lc-Delta ,馈电位置L1=L2,辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz 时自由空间中1/4个波长约为65.22mm ,用变量length 表示。
圆极化微带天线的HFSS 设计模型如下:立体图俯视图设计左旋圆极化微带天线,设置同轴线内芯模型Feed的底面圆心坐标和端口面模型Port的圆心坐标为(-L1,-L2,0)。
(2)仿真结果S11扫频分析结果由图得天线的谐振频率为1.11GHz,不是1.15GHz。
需要进行优化设计。
先进行参数扫描分析a、分析中心频率与辐射切片长度Lc的变化关系,扫描分析范围为:48mm~51mm,扫描步进为0.2mm仿真结果:由图得到,当Lc=50.4mm时,中心频率在1.15GHz,回波损耗最小。
查看当Lc=50.4时,天线的输入阻抗从图得到:工作频率为1.15GHz,输入阻抗为(75.59,j3.58),需要输入阻抗为50Ω,添加L1为参数扫描变量b、分析1.15GHz谐振频点处输入阻抗与同轴线馈电点位置L1的变化关系,扫描分析范围为:5~7mm,扫描步进为0.2mm仿真结果::发现L1=6mm~6.2mm时,输入阻抗接近50Ω。
②优化设计优化结果得到:当L0=50.38mm时,L1=6.12mm时,符合要求。
③查看优化后的天线性能a、S11分析结果天线的中心频率上S11值为-16.45dB,S11<-10dB的带宽为(1.1735-1.1279)/1.15=3.9%.b、VSWR分析结果在1.15GHz处,VSWR值为1.3542<2,符合要求。
c、轴比扫频结果在最大辐射方向天线中心频率1.15GHz处的轴比为0.727。
d、xz和yz面上的左旋圆极化波(LHCP)增益和天线总增益方向图从图得出:θ在-1200~1200范围内,天线的总增益与左旋圆极化波增益近似相等,这也表明了天线辐射的是左旋圆极化波。
d、左旋圆极化三维增益方向图五、实验总结在本次实验中,更加掌握和理解了微带天线的相关基本理论,学习到了微带天线圆极化工作实现原理,同时学习了如何用HFSS设计和分析线极化和圆极化微带天线,感受到了HFSS强大的电磁仿真功能,在以后的日子要认真学习使用HFSS,达到熟练运用HFSS设计分析天线。
六、参考资料李明洋,刘敏,HFSS天线设计.第二版.北京:电子工业出版社。