液态金属凝固原理讲解
•竞争淘汰:离开型壁的距离越远, 取向不利的晶体被淘汰得就越多, 柱状晶的方向就越集中,同时晶 粒的平均尺寸也就越大。
2、内部柱状晶区的形成
凝固壳层→界面处晶粒单向散热→ 晶粒逆热流方向择优生长而形成柱 状晶
柱状晶区影响因素: (1)铸型导热能力: 铸型导热能
力越强,有利于柱状区形成; (2)合金成分:溶质含量越少,
1.4 金属结晶组织和凝固缺陷的控制
• 晶区数目以及柱状晶区和等轴晶区的相对宽度随合金性质 和具体凝固条件而变化,在一定条件下,可获得完全由柱 状晶或等轴晶所组成的宏观结晶组织 :
完全柱状晶
完全等轴晶
1、表面细晶粒区的形成
形成原因:
(1)铸型壁附近熔体受到强烈的激冷作用而大量形核,形成无 方向性的表面细等轴晶组织,也叫“激冷晶”。
铸件结晶组织对铸件质量和性能的影响 表面细晶粒区薄,对铸件的质量和性能影响不大。 铸件的质量与性能主要取决于柱状晶区与等轴晶区的比
例以及晶粒大小。
1.4.2 铸件晶粒组织的控制
(1)柱状晶(组织致密、晶粒粗大、 各向异性):
生长过程中凝固区域窄,横向 生长受到相邻晶体的阻碍,枝晶不 能充分发展,分枝少,结晶后显微 缩松等晶间杂质少,组织致密。
• 细晶区形成的前提:抑制铸件形成稳定的凝固壳层。
2、内部柱状晶区的形成
• 稳定凝固壳层产生→→柱状晶区开始 • 内部等轴晶区形成→→柱状晶区结束 • 柱状晶区的宽度及存在取决于上述两个因素综合作用结果。 • 生长方式:择优生长
•择优生长:各枝晶主干方向互不 相同,主干与热流方向相平行的 枝晶生长迅速,优先向内伸展并 抑制相邻枝晶的生长。逐渐淘汰 掉取向不利的晶体过程中发展成 柱状晶组织。
溶质原子富集而使界面前方成分过冷增大发生非均匀形核 (2)随对流漂移到铸件中心的自由小晶体
1)激冷游离晶 2)型壁晶粒脱落 3)液面晶粒沉降( 结晶雨) 上述晶粒随着液流漂移到铸件心部,通过增殖(枝晶熔 断),长大形成内部等轴晶 (3)共格的非金属夹杂物的非均匀形核
1)激冷游离晶
非均质形核的激冷游离晶
有利于柱状晶区形成。 (3)非金属夹杂物含量:非金属
夹杂物含量少,有利于柱状晶 区形成。
UCSD MAE-1 Fluid Dynamics Focus Area Lecture Notes, G.R.
穿晶组织
3、中心等轴晶区的形成
--液态金属内部晶核自由生长的结果
• 晶核来源: (1)过冷液态金属直接形核
但柱状晶比较粗大,晶界面积 小,排列位向一致,其性能具有明 显的方向性:纵向好、横向差。凝 固界面前方常汇集有较多的第二相 杂质 ,将导致铸件热裂。
UCSD MAE-1 Fluid Dynamics Focus Area Lecture Notes, G.R.
1.4.2 铸件晶粒组织的控制 (2)等轴晶(组织疏松、各向同性):
较多的柱状晶,增加其致密度; 对一般钢铁材料和塑性较差的有色金属铸锭,希望获得
较多的甚至是全部细小的等轴晶组织; 对于高温下工作的零件,通过单向结晶消除横向晶界,
防止晶界降低蠕变抗力。
UCSD MAE-1 Fluid Dynamics Focus Area Lecture Notes, G.R.
1.4.2 铸件晶粒组织的控制
晶界面积大,杂质和缺陷分布比 较分散,且各晶粒之间位向也各不相 同,故性能均匀而稳定,没有方向性。
枝晶比较发达,显微缩松较多, 凝固后组织不够致密。
细化能使杂质和缺陷分布更加分 散,从而在一定程度上提高各项性能。 晶粒越细综合性能越好。
1.4.2 铸件晶粒组织的控制 对塑性较好的有色金属或奥氏体不锈钢锭,希望得到
1.等轴晶组织的获得和细化
强化非均匀形核 促进晶粒游离 抑制柱状晶区
1. 等轴晶组织的获得和细化
(1) 降低浇注温度 熔体的过热度较小,与浇道内壁接触就能产生大量的游 离晶粒。有助于已形成的游离晶粒的残存,这对等轴晶的 形成和细化有利。
1. 等轴晶组织的获得和细化
(2)孕育处理 孕育——向液态金属中添加少量孕育剂促进液态金属内部 形核,以达到增加晶核数、细化点高,直接作为外加晶核 b)通过与液态金属的相互作用形成高熔点化合物而产 生非均匀晶核-能与液相中某些元素组成较稳定的化合物 如,铝液中加入Ti,形成TiAl3;钢中加入Ti、V等生成 TiC、VC可起到细化晶粒的作用。
凝固初期形 成的激冷游 离晶
因浇注温度低,浇注中形成的激冷游离晶
2)型壁晶粒脱落和枝晶熔断、游离
型壁晶体或柱状枝晶在凝固界面前方的熔断、游离和 增殖——理论基点为溶质再分配。
图 型壁晶粒脱落示意图
2)型壁晶粒脱落和枝晶熔断、游离
图 枝晶分枝“缩颈”的形成 a) b) c)为二、三次分枝时缩颈形成过程示意图。 V为生长方向。d) 分枝缩颈
第一章 液态金属凝固原理
1.4 金属结晶组织和凝固缺陷的控制
1.4.1 铸件典型晶粒组织的形成及其影响因素
铸件的典型晶粒凝固组织(三个 晶区 ):
表面细晶粒区:紧靠型壁的外壳 层,由紊乱排列的细小等轴晶所 组成,仅几个晶粒厚。
柱状晶区:由自外向内沿着热流 方向彼此平行排列的柱状晶所组 成。
内部等轴晶区:由紊乱排列的粗 大等轴晶所组成 。
• 晶区的形成和转变是过冷熔体独立形核能力和各种形式晶 粒游离、漂移与沉积的程度这两个基本条件综合作用的结 果。决定了铸件中各晶区的相对大小和晶粒的粗细。
浇注温度的影响
UCSD MAE-1 Fluid Dynamics Focus Area Lecture Notes, G.R.
1.4.2 铸件晶粒组织的控制
(2)各种形式的晶粒游离(浇注时液体冲刷、液体对流造成)。 • 细化程度取决于 (1)浇注温度、铸型导热能力:浇注温度越高、铸型导热能力
越强,不利于细晶区形成;
(2)合金成分:溶质含量越多,造成“颈缩”,利于细晶区形 成。
(3)非金属夹杂物含量:型壁附近熔体内大量的“非均匀形 核”,利于细晶区形成。
2)型壁晶粒脱落和枝晶熔断、游离
3)“结晶雨”游离晶
• 液面处形成的晶粒+顶部凝固层脱落的分枝→ →密度比液体大 →下沉 →产生晶粒游离。
• 多发生在大型铸锭的凝固过程中
• 铸件中三晶区的形成相互联系、彼此制约
• 稳定凝固壳层的产生决定着表面细晶粒区向柱状晶区的过 渡,而阻止柱状晶区进一步发展的关键则是中心等轴晶区 的形成。