当前位置:文档之家› 梁的挠曲线近似微分方程及其积分

梁的挠曲线近似微分方程及其积分


可见该梁的qmax和wmax均在x=l的自由端处。于是有
qmax
q
|xl
Fl 2 EI

Fl 2 2EI

Fl 2 2EI


wmax

w
|xl

Fl 3 2EI
Fl 3 6EI
Fl 3 3EI

由此题可见,当以x为自变量对挠曲线近似微分方程 进行积分时,所得转角方程和挠曲线方程中的积分常数 是有其几何意义的:
从几何方面来看,平面曲线的曲率可写作
1
w
x 1 w2 3/2
式中,等号右边有正负号是因为曲率1/为度量平面曲线 (挠曲线)弯曲变形程度的非负值的量,而w"是q = w' 沿x方
向的变化率,是有正负的。
再注意到在图示坐标系中,负弯矩对应于正值w" ,正弯矩对
应于负值的w" ,故从上列两式应有
22
2
挠曲线近似微分方程为
EIw M x q lx x2 2 以x为自变量进行积分得:
EIw


q 2

lx2 2

x3 3


C1
EIw

q 2

lx3 6

x4 12
转角则明显不同。
在图示坐标系中,挠度w向下为正,向上为负;
顺时针转向的转角q为正,逆时针转向的转角q为负。
§5-2 梁的挠曲线近似微分方程及其积分
Ⅰ. 挠曲线近似微分方程的导出 在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况
下中性层的曲率为
1M EI
这也就是位于中性层内的挠曲线的曲率的表达式。
F
lx2 2

x3 6

C1x

C2
该梁的边界条件为:在 x=0 处 w 0,w =0
于是得
C1 0,C2 0
从而有 转角方程 q w Fxl Fx2
EI 2EI 挠曲线方程 w Fx2l Fx3
2EI 6EI 根据该梁边界条件和全梁横截面上弯矩均为负值, 以及挠曲线应光滑连续描出了挠曲线的示意图。
w
M x
1 w2 3/2 EI
由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略
去,于是得挠曲线近似微分方程 w M x
EI
Ⅱ. 挠曲线近似微分方程的积分及边界条件
w M x
EI 求等直梁的挠曲线方程时可将上式改写为
EIw M x
横截面的转角q 也就是挠曲线在该相应点的切线与x轴之
间的夹角,从而有转角方程:
q tanq w f x
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件
有关。图a和图b所示两根梁,如果它们的材料和尺寸相同, 所受的外力偶之矩Me也相等,显然它们的变形程度(也就 是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和
后进行积分,再利用边界条件(boundary condition)确定积分 常数。
当全梁各横截面上的弯矩 可用一个弯矩方程表示时(例如 图中所示情况)有
EIw M xd x C1
EIw M xd x d x C1x C2
以上两式中的积分常数C1, C2由边界条件确定后即可得出梁 的转角方程和挠曲线方程。
边界条件(这里也就是支座处的约束条件)的示例如 下图所示。
若由于梁上的荷载不连续等原因使得梁的弯矩方程 需分段写出时,各段梁的挠曲线近似微分方程也就不同。 而对各段梁的近似微分方程积分时,都将出现两个积分 常数。要确定这些积分常数,除利用支座处的约束条件 (constraint condition)外,还需利用相邻两段梁在交界处 的连续条件(continuity condition)。这两类条件统称为边 界条件。
§5-1 梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直 于x轴方向的线位移w称为挠度(deflection),横截面对其原
来位置的角位移q 称为横截面的转角(angle of rotation)。
弯曲后梁的轴线——挠曲线(deflection curve)为一平 坦而光滑的曲线,它可以表达为w=f(x),此式称为挠曲线 方程。由于梁变形后的横截面仍与挠曲线保持垂直,故
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产 生影响。但工程上常用的梁其跨长l 往往大于横截面高度h 的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
x
1
x

M x
EI
注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同 在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主 要承受剪力的腹板则由价廉但切变模量较小的复合材料制 作,此时剪切变形对梁的变形的影响是不可忽略的。
C2 EIw |x0 EIw0
思考: 试求图示等截面悬臂梁在所示坐标系中的挠曲线 方程和转角方程。积分常数C1和C2等于零吗?
例题5-2 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
解:该梁的弯矩方程为
M x ql x 1 qx2 q lx x2
C1 EIw |x0 EIq0
C2 EIw |x0 EIw0
此例题所示的悬臂梁,q0=0,w0=0, 因而也有C1=0 ,C2=0。
事实上,当以x为自变量时
EIw M xd x C1 EIw [[M xd x]d x C1x C2
两式中的积分在坐标原点处(即x=0处)总是等于零,从而有 C1 EIw |x0 EIq0
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
并确定其最大挠度wmax和最大转角qmax。
解:该梁的弯矩方程为
M x Fl x
挠曲线近似微分方程为
EIw M x Fl x
以x为自变量进行积分得
EIw

F lx

x2 2
Hale Waihona Puke C1EIw
相关主题