版图设计
常见工艺误差
2. 设计规则
违背设计规则带来的误差(1)
若两层掩膜未对准会产生问题,如金属塞图形与n+区未 对准会导致n+有源区与p型衬底之间发生短路
2. 设计规则
符合设计规则
违背设计规则带来的误差(2)
不符合设计规则 源、漏短路
符合设计规则
不符合设计规则 源、漏变窄
2. 设计规则
违背设计规则带来的误差(3) Nhomakorabea2. 设计规则
CMOS反相器版图设计
确定晶体管最小尺寸的设计规则
2. 设计规则
CMOS反相器版图设计
• P型MOS管必须放在n阱区。 MOS管必须放在n • PMOS的有源区、n阱和n+区的最小重叠区决定n PMOS的有源区、n阱和n+区的最小重叠区决定n • •
阱的最小尺寸。 n+有源区同n阱间的最小间距决定了nMOS管和 +有源区同n阱间的最小间距决定了nMOS nMOS管和 pMOS管间的距离。 pMOS管间的距离。 通常,将nMOS管和pMOS管的多晶硅栅极对准, 通常,将nMOS管和pMOS管的多晶硅栅极对准, 这样可以由最小长度的多晶硅线条组成栅极连线。 在一般版图中要避免出现长的多晶硅连接的原因 在于多晶硅线条过高的寄生电阻和寄生电容会导 致明显的RC延时。 致明显的RC延时。
VLSI设计 VLSI设计
1、版图设计
• 版图设计入门 • 版图设计规则 • 基本工艺层版图 • 设计举例
1. 版图设计入门
版图设计的定义 版图(layout):
版图是集成电路从设计走向制造的桥梁,它包含了集 成电路尺寸、各层拓扑定义等器件相关的物理信息数 据。 集成电路制造厂家根据这些数据来制造掩膜。
CMOS反相器中 决定nMOS和 pMOS管的间 距的设计规 则
2. 设计规则
CMOS反相器版图设计
• 掩膜版图的最后一步是在金属中形成输出节点 • •
VDD和GND接触孔间的局部互连。 VDD和GND接触孔间的局部互连。 掩膜版图中的金属线尺寸通常由金属最小宽度和 最小金属间距(同一层上的两条相邻线间)决定。 注意,为了得到合适的偏置,n阱区必须也有一个 注意,为了得到合适的偏置,n VDD接触孔。 VDD接触孔。
给出版图的整体规划和各图形间的连接
版图检查(Layout Check )
设计规则检验(DRC,Design Rule Check) 电气规则检查(ERC,Electrical Rule Check) 版图与电路图一致性检验(LVS,Layout Versus Schematic )
1. 版图设计入门
不符合设计规则 符合设计规则 有源区接触不良
2. 设计规则
违背设计规则带来的误差(4)
接触孔下不得有多晶或有源区边缘
3. 基本工艺层版图
N阱
3. 基本工艺层版图
用于制作nFET和pFET 有源区(Active) 被场氧(FOX)所隔开
有源区
3. 基本工艺层版图
掺杂硅区 pSelect掺B,用于制作pFET 属于有源区的一部分
•
2. 设计规则
最小宽度与最小间距(1)
2. 设计规则
最小宽度与最小间距(2)
2. 设计规则
距离周边最小距离
2. 设计规则
最短露头
2. 设计规则
通孔与接触孔
2. 设计规则
层间互连约束
Metal2不能直接 接有源区、多晶 硅
Metal1、Metal2、 poly不能直接对准
2. 设计规则
2. 设计规则
设计规则与性能 和成品率的关系
严格遵守设计规则可以极大地避免由于短路、断路 造成的电路失效和容差以及寄生效应引起的性能劣 化。 一般来讲,设计规则反映了性能和成品率之间可能 的最好的折衷。 设计规则并不是区分错误设计和正确设计的分界线。 遵守版图设计规则通常大大增加电路成品率的可能 性。 违反某些具体设计规则可使电路性能改进的可能性 也越大,这种改进可能是以牺牲成品率为代价的。
掺杂硅区:n+
nSelect掺As或P,用于制作nFET
3. 基本工艺层版图
掺杂硅区:p+
3. 基本工艺层版图
掩蔽n+、p+掺杂 多晶硅(Poly Si)
多晶硅
作为MOS栅电容的上导电极板
3. 基本工艺层版图
nFET的形成
3. 基本工艺层版图
pFET的形成
3. 基本工艺层版图
实际尺寸与设 计尺寸的差别
工艺误差
显影:光衍射导致边缘模糊化 工艺误差 刻蚀:横向刻蚀,使边缘加粗 注入:横向注入导致n+/p+区沿水平方向有不期望的扩大
刻蚀限制最小宽度
2. 设计规则
物理极限
串扰:导线过细及间距过短,会使相邻导线发生电耦合 物理极限 电迁移:铝条过细及间距过短,电迁移作用更明显
横向注入限制了有源区间距
2. 设计规则
3. 基本工艺层版图
FET沟道长度 设计值L=多晶硅的线宽Wp 有效值Leff=L-△L<Wp FET沟道宽度 设计值W=有源区Wa 有效值Weff=W-△W<Wa
版图尺寸≠最终尺寸
版图尺寸(设计值) ≠芯片的最终尺寸(有效值)
分析FET特性时
应用Leff、Weff、 Weff/ Leff 不要用L、W、W/L
3. 基本工艺层版图
有源区接触
有源区接触(Active Contact):硅与互连金属的接触
3. 基本工艺层版图
金属层1(Metal1)
要强调的是,这里举的例子仅仅是这个电路许多可能的 版图中的一种。 版图设计规则对掩膜几何排列有一系列的限制,但是, 全定制版图设计过程在器件尺寸、单个器件定位以及器 件间互连布线方面都允许有一定的变化范围,甚至对只 有两个晶体管组成的简单电路也是如此。根据主要的设 计标准和设计规范(如整个硅区的最小化、延时的最小 化、输入输出引脚的定位等),人们可以选择某个掩膜 版图设计方案。 注意,随着电路复杂度的增加,例如设计中使用到的晶 体管数量的增加,可能的版图数量也会增加。
2. 设计规则
• CMOS逻辑门掩膜版图的设计是一个不断反复的过程。首 CMOS逻辑门掩膜版图的设计是一个不断反复的过程。首 •
先是电路布局(实现预期的逻辑功能)和晶体管尺寸初始 化(实现期望的性能规范)。 绘制出一个简单的电路版图,在图上显示出晶体管位置、 管间的局部互连和接触孔的位置。
2. 设计规则
2. 设计规则
• 有了合适的版图结构后,就可以根据版图设计规
则利用版图编辑工具绘出掩膜层。这个过程可能 需要多次反复以符合全部的设计规则,但基本布 局不应有太大的改变。 进行DRC(设计规则检查)之后,就在完成的版 进行DRC(设计规则检查)之后,就在完成的版 图上进行电路参数提取来决定实际的晶体管尺寸, 更重要的是确定每个节点的寄生电容。提取步骤 完成后,提取工具会自动生成一个详细的SPICE 完成后,提取工具会自动生成一个详细的SPICE 输入文件。 现在就可以使用提取的网表通过SPICE仿真确定 现在就可以使用提取的网表通过SPICE仿真确定 电路的实际性能。
因IC制造水平及物理极限效应对版图几何尺寸提出 的限制要求; 是各集成电路制造厂家根据本身的工艺特点和技术 水平而制定的; 设计人员与工艺人员之间的接口与“协议”; 版图设计必须无条件的服从的准则。
2. 设计规则
什么是设计规则
• 用特定工艺制造电路的物理掩膜版图都必须遵循 • • •
一系列几何图形排列的规则,这些规则称为版图 设计规则。 由于器件的物理特性和工艺的限制,芯片上物理 层的尺寸进而版图的设计必须遵守特定的规则。 这些规则通常规定芯片上诸如金属和多晶硅的互 连或扩散区等物理现象的最小允许线宽、最小特 征尺寸以及最小允许间隔。 制定设计规则的主要目的是为了在制造时能用最 小的硅片面积达到较高的成品率和电路可靠性。
(1)一几何图形内边界到另一图形的内边界长度(intersect) (2)一几何图形外边界到另一图形的内边界长度(enclosure)
B A
intersect
enclosure
2. 设计规则
• 因为物理结构直接决定晶体管的跨导、寄生电容和电阻, • •
以及用于特定功能的硅区,所以说物理版图的设计与整 个电路的性能(面积、速度、功耗)关系密切。 另一方面,逻辑门精密的版图设计需要花费很多的时间 与精力。这在按照严格的限制对电路的面积和性能进行 优化时是非常需要的。 但是,对大多数数字VLSI电路的设计来说,自动版图生 但是,对大多数数字VLSI电路的设计来说,自动版图生 成是更好的选择(如用标准单元库,计算机辅助布局布 线)。为判断物理规范和限制,VLSI设计人员对物理掩 线)。为判断物理规范和限制,VLSI设计人员对物理掩 膜版图工艺必须有很好的了解。
版图设计:
版图设计是创建工程制图(网表)的精确的物理描述 过程,即定义各工艺层图形的形状、尺寸以及不同工 艺层的相对位置的过程。
1. 版图设计入门
版图设计的内容
设计内容:
布局:安排各个晶体管、基本单元、复杂单元 在芯片上的位置 布线:设计走线,实现管间、门间、单元间的 互连 尺寸确定:确定晶体管尺寸(W、L)、互连尺 寸(连线宽度)以及晶体管与互连之间的相对 尺寸等
1. 版图设计入门
版图设计的目标
设计目标:
满足电路功能、性能指标、质量要求 尽可能节省面积,以提高集成度,降低成本 尽可能缩短连线,以减少复杂度,缩短延时、 改善可靠性
1. 版图设计入门
版图编辑(Layout Editor )
EDA工具的作用
规定各个工艺层上图形的形状、尺寸和位置
布局布线(Place and route ) Place
EDA工具种类
目前很多集成电路的设计软件都包含有设 计版图的功能,如: