电磁感应中的能量问题【考点解读】1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等。
【考点精讲】 1.题型简述电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程。
2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化; (3)根据能量守恒定律或功能关系列式求解。
3.求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算。
(2)若电流变化,则①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功(理解发电机和电动机能量转化的区别);②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能; ③常用电量求法,RBlxn R S B n R nt I q =∆=∆Φ=∆=,有时会用它求金属杆的位移。
还有时会用动量定理求电量,这两种方法经常结合使用。
(一般在高三综合应用中使用)4.物理术语焦耳热和摩擦热①电流通过电阻做功,将电能转化为内能,过程中产生的热量称为焦耳热(Rt I Q 2=); ②系统克服一对动摩擦力做功,将机械能转化为内能,过程中产生的热量称为摩擦热(x F Q ∆=μ)。
例1 如图1所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度为B 的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,已知金属杆MN 运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN 两端始终与导轨接触良好,重力加速度为g .求:图1(1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q ,求这段时间内在定值电阻上产生的焦耳热Q ;(3)金属杆MN 在水平导轨上滑行的最大距离x m . 答案 见解析解析 (1)金属杆MN 在倾斜导轨上滑行的速度最大时,其受到的合力为零, 对其受力分析,可得mg sin θ-BI m L =0根据法拉第电磁感应定律、闭合电路欧姆定律可得: I m =BL v m2r解得:v m =2mgr sin θB 2L 2(2)设在这段时间内,金属杆MN 运动的位移为x 由电流的定义可得:q =I Δt根据法拉第电磁感应定律、闭合电路欧姆定律得:平均电流I =B ΔS 2r Δt =BLx2r Δt解得:x =2qrBL设电流为I 0时金属杆MN 的速度为v 0,根据法拉第电磁感应定律、闭合电路欧姆定律,可得I 0=BL v 02r ,解得v 0=2rI 0BL设此过程中,电路产生的焦耳热为Q 热,由功能关系可得: mgx sin θ=Q 热+12m v 02定值电阻r 产生的焦耳热Q =12Q 热解得:Q =mgqr sin θBL -mI 20r2B 2L2(3)设金属杆MN 在水平导轨上滑行时的加速度大小为a ,速度为v 时回路电流为I ,由牛顿第二定律得:BIL =ma由法拉第电磁感应定律、闭合电路欧姆定律可得: I =BL v 2r联立可得:B 2L 22r v =m Δv ΔtB 2L 22r v Δt =m Δv ,即B 2L 22r x m =m v m 得:x m =4m 2gr 2sin θB 4L 4变式1 (多选)(2017·山东潍坊中学一模)如图2所示,同一竖直面内的正方形导线框a 、b 的边长均为l ,电阻均为R ,质量分别为2m 和m .它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度大小为B 、方向垂直竖直面的匀强磁场区域.开始时,线框b 的上边与匀强磁场的下边界重合,线框a 的下边到匀强磁场的上边界的距离为l .现将系统由静止释放,当线框b 全部进入磁场时,a 、b 两个线框开始做匀速运动.不计摩擦和空气阻力,重力加速度为g ,则( )图2A.a 、b 两个线框匀速运动时的速度大小为2mgR B 2l2B.线框a 从下边进入磁场到上边离开磁场所用时间为3B 2l 3mgRC.从开始运动到线框a 全部进入磁场的过程中,线框a 所产生的焦耳热为mglD.从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做功为2mgl 答案 BC解析 设两线框匀速运动的速度为v ,此时轻绳上的张力大小为F T ,则对a 有:F T =2mg -BIl ,对b 有:F T =mg ,又I =E R ,E =Bl v ,解得v =mgRB 2l 2,故A 错误.线框a 从下边进入磁场后,线框a 通过磁场时以速度v 匀速运动,则线框a 从下边进入磁场到上边离开磁场所用时间t =3l v =3B 2l 3mgR ,故B 正确.从开始运动到线框a 全部进入磁场的过程中,线框a 只在其匀速进入磁场的过程中产生焦耳热,设为Q ,由功能关系有2mgl -F T l =Q ,得Q =mgl ,故C 正确.设两线框从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做的功为W ,此过程中左、右两线框分别向上、向下运动2l 的距离,对这一过程,由能量守恒定律有:4mgl =2mgl +12×3m v 2+W ,得W =2mgl -3m 3g 2R 22B 4l 4,故D 错误.变式2 如图3所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:图3(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P . 答案 (1)Bd v 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R解析 (1)MN 刚扫过金属杆时,感应电动势E =Bd v 0 感应电流I =ER解得I =Bd v 0R(2)安培力F =BId 由牛顿第二定律得F =ma 解得a =B 2d 2v 0mR(3)金属杆切割磁感线的相对速度v ′=v 0-v ,则 感应电动势E ′=Bd (v 0-v ) 电功率P =E ′2R解得P =B 2d 2(v 0-v )2R【对点题库】 1.(多选)(2017·山东泰安二模)如图4甲所示,间距为L 的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B ,轨道左侧连接一定值电阻R .垂直导轨的导体棒ab 在平行导轨的水平外力F 作用下沿导轨运动,F 随t 变化的规律如图乙所示.在0~t 0时间内,棒从静止开始做匀加速直线运动.图乙中t 0、F 1、F 2为已知量,棒和导轨的电阻不计.则( )图4A.在t 0以后,导体棒一直做匀加速直线运动B.在t 0以后,导体棒先做加速,最后做匀速直线运动C.在0~t 0时间内,导体棒的加速度大小为2(F 2-F 1)RB 2L 2t 0D.在0~t 0时间内,通过导体棒横截面的电荷量为(F 2-F 1)t 02BL答案 BD解析 因在0~t 0时间内棒做匀加速直线运动,故在t 0时刻F 2大于棒所受的安培力,在t 0以后,外力保持F 2不变,安培力逐渐变大,导体棒先做加速度减小的加速运动,当加速度a =0,即导体棒所受安培力与外力F 2相等后,导体棒做匀速直线运动,故A 错误,B 正确.设在0~t 0时间内导体棒的加速度为a ,通过导体棒横截面的电荷量为q ,导体棒的质量为m ,t 0时刻导体棒的速度为v ,则有:a =v t 0,F 2-B 2L 2v R =ma ,F 1=ma ,q =ΔΦR ,ΔΦ=B ΔS =BLv 2t 0,解得:a =(F 2-F 1)R B 2L 2t 0,q =(F 2-F 1)t 02BL,故C 错误,D 正确.2.如图5所示的匀强磁场中有一根弯成45°的金属线POQ ,其所在平面与磁场垂直,长直导线MN 与金属线紧密接触,起始时OA =l 0 ,且MN ⊥OQ ,所有导线单位长度电阻均为r ,MN 匀速水平向右运动的速度为v ,使MN 匀速运动的外力为F ,则外力F 随时间变化的规律图象正确的是( )图5答案 C解析 设经过时间t ,则MN 距O 点的距离为l 0+v t ,直导线在回路中的长度也为l 0+v t ,此时直导线产生的感应电动势E =B (l 0+v t )v ;整个回路的电阻为R =(2+2)(l 0+v t )r ,回路的电流I =ER =B (l 0+v t )v (2+2)(l 0+v t )r =B v (2+2)r ;直导线受到的外力F 大小等于安培力,即F =BIL=B B v (2+2)r (l 0+v t )=B 2v (2+2)r(l 0+v t ),故C 正确.3.(多选)(2017·河南三市二模)如图6所示,一根总电阻为R 的导线弯成宽度和高度均为d 的“半正弦波”形闭合线框.竖直虚线之间有宽度也为d 、磁感应强度为B 的匀强磁场,方向垂直于线框所在的平面.线框以速度v 向右匀速通过磁场,ab 边始终与磁场边界垂直.从b 点到达边界开始到a 点离开磁场为止,在这个过程中( )图6A.线框中的感应电流先沿逆时针方向后沿顺时针方向B.ab 段直导线始终不受安培力的作用C.平均感应电动势为12Bd vD.线框中产生的焦耳热为B 2d 3vR答案 AD解析 整个过程中闭合线框中的磁通量先增大后减小,由楞次定律和安培定则可判定A 正确.ab 段导线中有电流通过且与磁场垂直,故其受安培力的作用,B 错误.由于整个过程中磁通量变化量为0,故平均感应电动势为0,C 错误.整个过程中线框中产生一个周期的正弦式交变电流,其电动势峰值为E m =Bd v ,则线框中产生的焦耳热为Q =E 2R t =⎝⎛⎭⎫Bd v 22R·2d v =B 2d 3vR,D 正确.4.(2016·全国卷Ⅰ·24)如图7,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca ,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R ,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g ,已知金属棒ab 匀速下滑.求:图7(1)作用在金属棒ab 上的安培力的大小; (2)金属棒运动速度的大小. 答案 (1)mg (sin θ-3μcos θ) (2)mgRB 2L2(sin θ-3μcos θ) 解析 (1)由于ab 、cd 棒被平行于斜面的导线相连,故ab 、cd 速度总是相等,cd 也做匀速直线运动.设导线的张力的大小为F T ,右斜面对ab 棒的支持力的大小为F N1,作用在ab 棒上的安培力的大小为F ,左斜面对cd 棒的支持力大小为F N2,对于ab 棒,受力分析如图甲所示,由力的平衡条件得2mg sin θ=μF N1+F T +F①F N1=2mg cos θ②对于cd 棒,受力分析如图乙所示,由力的平衡条件得 mg sin θ+μF N2=F T ′=F T③F N2=mg cos θ④联立①②③④式得:F =mg (sin θ-3μcos θ)⑤(2)设金属棒运动速度大小为v ,ab 棒上的感应电动势为E =BL v ⑥ 回路中电流I =ER⑦ 安培力F =BIL⑧联立⑤⑥⑦⑧得: v =mgRB 2L2(sin θ-3μcos θ) 5.如图8所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L ,与水平面间的夹角为θ,导轨下端有垂直于轨道的挡板(图中未画出),上端连接一个阻值R =2r 的电阻,整个装置处在磁感应强度为B 、方向垂直导轨向上的匀强磁场中,两根相同的金属棒ab 、cd 放在导轨下端,其中棒ab 靠在挡板上,棒cd 在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a 的匀加速运动.已知每根金属棒质量为m 、长度为L 、电阻为r ,导轨电阻不计,棒与导轨始终接触良好.求:图8(1)经多长时间棒ab 对挡板的压力变为零; (2)棒ab 对挡板压力为零时,电阻R 的电功率; (3)棒ab 运动前,拉力F 随时间t 的变化关系. 答案 (1)5mgr sin θ2B 2L 2a (2)m 2g 2r sin 2θ2B 2L 2(3)F =m (g sin θ+a )+3B 2L 2a5rt解析 (1)棒ab 对挡板的压力为零时,受力分析可得 BI ab L =mg sin θ设经时间t 0棒ab 对挡板的压力为零,棒cd 产生的电动势为E ,则 E =BLat 0回路中电流I =Er +R 外R 外=Rr R +r =23rI ab =R R +rI 解得t 0=5mgr sin θ2B 2L 2a(2)棒ab 对挡板压力为零时,cd 两端电压为 U cd =E -Ir 解得U cd =mgr sin θBL此时电阻R 的电功率为P =U 2cd R解得P =m 2g 2r sin 2θ2B 2L 2(3)对cd 棒,由牛顿第二定律得 F -BI ′L -mg sin θ=ma I ′=E ′r +R 外E ′=BLat解得F =m (g sin θ+a )+3B 2L 2a5rt .6.(2016·全国卷Ⅲ·25)如图9,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图9(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 答案 (1)kt 0S R(2)B 0l v 0(t -t 0)+kSt (B 0l v 0+kS )B 0lR解析 (1)在金属棒未越过MN 之前,穿过回路的磁通量的变化量为ΔΦ=ΔBS =k ΔtS ① 由法拉第电磁感应定律有 E =ΔΦΔt②由欧姆定律得I =ER③由电流的定义得 I =Δq Δt④联立①②③④式得 |Δq |=kS RΔt⑤由⑤式得,在t =0到t =t 0的时间间隔内即Δt =t 0,流过电阻R 的电荷量q 的绝对值为 |q |=kt 0SR⑥(2)当t >t 0时,金属棒已越过MN .由于金属棒在MN 右侧做匀速运动,有 F =F 安⑦式中,F 是外加水平恒力,F 安是金属棒受到的安培力.设此时回路中的电流为I , F 安=B 0lI⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为 Φ′=B 0ls⑩回路的总磁通量为 Φt =Φ+Φ′⑪其中Φ=B 1S =ktS⑫由⑨⑩⑪⑫式得,在时刻t (t >t 0),穿过回路的总磁通量为Φt =B 0l v 0(t -t 0)+kSt ⑬ 在t 到t +Δt 的时间间隔内,总磁通量的改变量ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt⑭由法拉第电磁感应定律得,回路感应电动势的大小为 E t =ΔΦt Δt⑮由欧姆定律得I =E tR⑯联立⑦⑧⑭⑮⑯式得 F =(B 0l v 0+kS )B 0lR .。