当前位置:文档之家› 《刚体定轴转动》答案讲课教案

《刚体定轴转动》答案讲课教案

《刚体定轴转动》答案第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2(7). Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10). l g /sin 3θω= 三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==422θβω 可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ②h =221at ③则将m 1、t 1代入上述方程组,得 a 1=2h /21t =0.0156 m / s 2T 1=m 1 (g -a 1)=78.3 NJ =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得 a 2=2h /22t =6.4×10-3 m / s 2 T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 2a4. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω∴ t Jkd d -=ωω两边积分: ⎰⎰-=t t J k02/d d 100ωωωω 得 ln2 = kt / J∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2这里的J 0是没有砝码时系统的转动惯量. (2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π=6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ωR m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以L21L21L O0v0vL m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为ω,系统角动量守恒 得: J ω = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJ m =v代入J =231Ml ,由上述两式可得 M =3m(2) 由机械能守恒式mgl m =2021v 及 ()θωcos 121212-=Mgl J并利用(1) 中所求得的关系可得 31arccos =θ四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

参考解答: 不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.O θMmll2. 刚体定轴转动时,它的动能的增量只决定于外力对它做的功而与内力的作用无关。

对于非刚体也是这样吗?为什么?参考解答:根据动能定理可知,质点系的动能增量不仅决定于外力做的功,还决定于内力做的功。

由于刚体内任意两质量元间的距离固定,或说在运动过程中两质量元的相对位移为零,所以每一对内力做功之和都为零。

故刚体定轴转动时,动能的增量就只决定于外力的功而与内力的作用无关了。

非刚体的各质量元间一般都会有相对位移,所以不能保证每一对内力做功之和都为零,故动能的增量不仅决定于外力做的功还决定于内力做的功。

3. 乒乓球运动员在台面上搓动乒乓球,为什么乒乓球能自动返回?参考解答:分析:乒乓球(设乒乓球为均质球壳)的运动可分解为球随质心的平动和绕通过质心的轴的转动.乒乓球在台面上滚动时,受到的水平方向的力只有摩擦力.若乒乓球平动的初始速度v c 的方向如图,则摩擦力 F r 的 方向一定向后.摩擦力的作用有二,对质心的运动来说,它使质心平动的速度v c 逐渐减小;对绕质心的转动来说,它将使转动的角速度ω逐渐变小.当质心平动的速度v c = 0而角速度ω ≠0 时,乒乓球将返回.因此,要使乒乓球能自动返回,初始速度v c 和初始角速度ω0的大小应满足一定的关系. 解题:由质心运动定理:tm F c r d d v =-因mg F r μ=, 得 g c c μ-=0v v (1)由对通过质心的轴(垂直于屏面)的转动定律βI M =t mR RF r d d )32(2ω=-, 得 gt Rμωω230-= (2)由(1),(2)两式可得 Rc c vv --=.023ωω, 令 0 0>=ω;c v 可得 Rc 23.0v>ω这说明当v c= 0和 0的大小满足此关系时,乒乓球可自动返回.。

相关主题