当前位置:文档之家› 大学物理_刚体的定轴转动_习题及答案

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。

解:(1)由题意飞轮的初角速度为0240()n rad s ωππ==飞轮作均减速转动,其角加速度为200404/10rad s tωωπβπ--===-∆ 故从开始制动到停止转动,飞轮转过的角位移为2012002t t rad θωβπ∆=∆+∆=因此,飞轮转过圈数为/2θπ∆=100圈。

(2)开始制动后5秒时飞轮的角速度为0404520()trad s ωωβπππ=+∆=-⨯=6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量。

解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和。

由此可得122212122222112244212112()()2222112()()()()22222211()()162I I I d d m m d d d d L a Ld ad kg m ρπρππρ=+=⨯+=⨯⨯⨯+⨯⨯=+⋅ 7. 如图所示,一半径为r ,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度。

解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= (1)对于滑轮按转动定律有212Tr mr β=(2) 由角量线量关系有a r β= (3)联立以上三式解得aLd 1d 28. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β。

解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2。

对重物3m 按牛顿第二定律有3133m g T m a -= (1) 对重物4m 按牛顿第二定律有2444T m g m a -= (2)对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭(3)由角量线量之间的关系有 31a r β=(4)42a r β= (5)联立以上五式解得31422222112231421122m r m r m r m r m r m r β-=+++9. 如图所示,一半径为R ,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动。

现将它平放在一水平板上,盘与板表面的摩擦因数为μ。

(1)求圆盘所受的摩擦力矩;(2)问经过多少时间后,圆盘转动才能停止解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩。

另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间。

(1)圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为222(2)2/m dM rdr g r r mgdr R Rμπμπ=-⋅⋅=- 负号表示摩擦力矩为阻力矩。

对上式沿径向积分得圆盘所受的总摩擦力矩大小为22223Rr mgdr M dM dr mgR R μμ===⎰⎰(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的ωrdFdr时间为034I Rt M gωωμ-∆== 10. 飞轮的质量m =60kg ,半径R =0.25m ,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ =,飞轮的转动惯量可按匀质圆盘计算.试求: (1)设F =100 N ,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 (2)如果在2s 内飞轮转速减少一半,需加多大的力F解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+ 对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ= N N '= ∴ F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为rad21.53)49(340214960290021220ππππβωφ⨯=⨯⨯-⨯⨯=+=t t 可知在这段时间里,飞轮转了1.53转.(2)10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 2000s rad 21522-⋅-=-=-=πωωωβtt用上面式(1)所示的关系,可求出所需的制动力为Nl l mRl F 1772)75.050.0(40.021550.025.060)(2211=⨯+⨯⨯⨯⨯⨯=+-=πμβ11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动。

若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β。

解:设两轮之间摩擦力为f对主动轮按转动定律有:111M fr I β-= (1)对从动轮按转动定律有222fr I β= (2)由于两个轮边沿速率相同,有1122r r ββ= (3)联立以上三式解得221221221Mr I r I r β=+121221221Mr r I r I r β=+12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12(a)图所示.设R =0.20m, r =0.10m ,m =4 kg ,M =10 kg ,1m =2m =2 kg ,且开始时1m ,2m 离地均为h =2m .求: (1)柱体转动时的角加速度; (2)两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12(b)图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,, 而 222121mr MR I += 由上式求得22222222121s rad 13.68.910.0220.0210.042120.0102121.022.0-⋅=⨯⨯+⨯+⨯⨯+⨯⨯⨯-⨯=++-=gr m R m I rm Rm β(2)由①式8.208.9213.610.02222=⨯+⨯⨯=+=g m r m T βN由②式1.1713.6.2.028.92111=⨯⨯-⨯=-=βR m g m T N13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘(如题2-31图所示方向). (1)开始时轮是静止的,在质点打入后的角速度为何值(2)用m ,0m 和θ 表示系统(包括轮和质点)最后动能和初始动能之比. 解: (1)射入的过程对O 轴的角动量守恒ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω(2) 020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υρ与杆下端小球m 作对心碰撞,碰后以021υρ的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:00212323mv l mv l I ω=-⋅+ 而 222212()2()333I m l m l ml =+=所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩. 解:(1) 两轮啮合过程满足角动量守恒:()A A A B I I I ωω=+ 所以 A AA BI I I ωω=+因为2n ωπ=故 10600200/min 1020A A AB I n n r I I ⨯===++(2) 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯===m 21v ϖl 0v lA 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅ B 轮各所受的冲量矩:202040020(0) 4.1910()33B B L I I N m s ππωω∆=-=⨯-==-⨯⋅⋅ 16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径).解:(1) 球体收缩过程满足角动量守恒:0022I I ωω=2000202225421()52mR I I m R ωωωω===所以 0202244T T ππωω=== 17. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.解:(1) 子弹击中圆盘过程满足角动量守恒:2201()2mRv mR MR ω=+所以 002211()22mRv mv mR MR m M Rω==++ (2)圆盘受到的摩擦力矩为223RM rdrgr MRg μσπμ'=-⋅=-⎰由转动定律得M Iβ'=2200001()(0)12()()32223mv mR MR m M RI mv t M Mg MRg ωωωωβμμ+-+--===='-。

相关主题