当前位置:
文档之家› 高考物理法拉第电磁感应定律-经典压轴题含答案
高考物理法拉第电磁感应定律-经典压轴题含答案
(1)求磁感应强度B的大小;
(2)若撤去外力后棒的速度v随位移x的变化规律满足 (v0是撤去外力时,金属棒速度),且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?
(3)若在棒未出磁场区域时撤出外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.
解得:
刚进入磁场时产生的感应电动势:
导轨宽度:
回路电阻:
联立可得:
(2)设长度为S,从MP到NQ过程中的任一时刻,速度为 ,在此后无穷小的 时间内,根据动量定理:
得:
(3)金属棒匀加速运动,
切割磁感线的有效长度为:
产生感应电动势:
回路的瞬时电阻:
功率:
金属棒运动到D点,所需的时间设为 ,则有:
解得:
WF-W'安+(M-m)g·2L= (M+m)( -v2)
联立解得:
WF-W'安=0
而W'安=Q',故Q'=3.6 J
又因为线框每边产生的热量相等,故eb边上产生的焦耳热:
Qeb= Q'=0.9 J.
答:(1)线框eb边进入磁场中运动时,e、b两点间的电势差Ueb=1.2 V.
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q=3.2 J.
【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F的功率.
9.如图所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s.一质量为m、电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始向右运动,测得电阻两端电压随时间均匀增大.(已知:l=1m,m=1kg,R=0.3Ω,r=0.2Ω,s=1m)
此时金属框刚好做匀速运动,则有:
பைடு நூலகம்mg=BIL
又
联立解得
代入数据得:
(2)当h>2L时,bc边第一次进入磁场时金属线框的速度
即有
又已知金属框bc边每次出磁场时都刚好做匀速运动,经过的位移为L,设此时线框的速度为v′,则有
解得:
根据题意可知,为保证金属框bc边每次出磁场时都刚好做匀速运动,则应有
即有
(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q0,则根据能量守恒有:
(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;
(2) 0~t1时间内通过电阻R1的电荷量q.
【答案】(1) (2)
【解析】
【详解】
(1)由法拉第电磁感应定律 有 ①
(2)由题意可知总电阻R总=R+2R=3R②
由闭合电路的欧姆定律有电阻R1中的电流 ③
0~t1时间内通过电阻R1的电荷量 ④
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
(1)求磁感应强度B的大小;
(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;
(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.
【答案】(1)1 T(2)0.3 m(3)0.3nJ
【解析】
【详解】
(1)当h=2L时,bc进入磁场时线框的速度
(1)当t=1s时,棒受到安培力F安的大小和方向;
(2)当t=1s时,棒受到外力F的大小和方向;
(3)4s后,撤去外力F,金属棒将由静止开始下滑,这时用电压传感器将R两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.
高考物理法拉第电磁感应定律-经典压轴题含答案
一、法拉第电磁感应定律
1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.
(1)线框eb边进入磁场中运动时,e、b两点间的电势差Ueb为多少?
(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?
(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功WF=3.6 J,求eb边上产生的焦耳Qeb为多少?
(3)eb边上产生的焦耳Qeb=0.9J.
3.如下图所示,MN、PQ为足够长的光滑平行导轨,间距L=0.5m.导轨平面与水平面间的夹角 = 30°,NQ丄MN,NQ间连接有一个 的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为 ,将一根质量为m=0.02kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻 ,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行,当金属棒滑行至cd处时速度大小开始保持不变,cd距离NQ为s=0.5 m,g=10m/s2。
【答案】(1)0.5N;方向沿斜面向上(2)0.5N,方向沿斜面向上(3)1.5C
【解析】
【分析】
【详解】
(1)0-3s内,由法拉第电磁感应定律得:
T=1s时,F安=BIL1=0.5N方向沿斜面向上
(2)对ab棒受力分析,设F沿斜面向下,由平衡条件:
F+mgsin30° -F安=0
F=-0.5N
外力F大小为0.5N.方向沿斜面向上
由①②③④式得
5.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R=1.5Ω的电阻,质量为m=0.2Kg、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F,g=10m/s2求:
(1)求金属棒达到稳定时的速度是多大;
(2)金属棒从静止开始到稳定速度的过程中,电阻R上产生的热量是多少?
(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t=1s时磁感应强度应为多大?
【答案】(1) (2)0.0183J(3)
【解析】
【详解】
当 时,
7.如图所示,两根间距为L的平行金属导轨,其cd右侧水平,左侧为竖直的 画弧,圆弧半径为r,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R1的电阻,整个装置处在竖直向上的匀强磁场中。现有一根阻值为R2、质量为m的金属杆,在水平拉力作用下,从图中位置ef由静止开始做加速度为a的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好。开始运动后,经时间t1,金属杆运动到cd时撤去拉力,此时理想电压表的示数为U,此后全属杆恰好能到达圆弧最高处ab。重力加速度为g。求:
(3)q=It, ; ;
联立解得
6.如图所示,两彼此平行的金属导轨MN、PQ水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ,∠NDQ=1200,ND与DQ的长度均为L,MP右侧空间存在磁感应强度大小为B、方向竖直向上的匀强磁场.导轨MN、PQ电阻不计,金属棒与金属框架NDQ单位长度的电阻值为r,金属棒质量为m,长度与MN、PQ之间的间距相同,与导轨MN、PQ的动摩擦因数为.现让金属棒从曲面上离水平面高h的位置由静止释放,金属棒恰好能运动到NQ边界处.
(1)在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有
其中
根据法拉第电磁感应定律,有
联立解得:
(2)根据能量关系有
电阻R上产生的热量
解得:
(3)当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:
根据位移时间关系公式,有
设t时刻磁感应强度为B,总磁通量不变,有:
【详解】
(1)金属杆运动到cd时,由欧姆定律可得
由闭合电路的欧姆定律可得E1=I1(R1+R2)
金属杆的速度v1=at1
由法拉第电磁感应定律可得E1=BLv1
解得: ;
由开始运动经过时间t,则v=at
感应电流
金属杆受到的安培力F安=BIL
由牛顿运动定律F-F安=ma
可得 ;
(2)金属杆从ef运动到cd过程中,位移
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
当t=1s时,代入数据解得,此时磁感应强度:
4.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1,在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求