概率论总结目录一、前五章总结第一章随机事件和概率 (1)第二章随机变量及其分布 (5)第三章多维随机变量及其分布 (10)第四章随机变量的数字特征 (13)第五章极限定理 (18)二、学习概率论这门课的心得体会 (20)一、前五章总结第一章随机事件和概率第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。
在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为S或Ω。
2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件间的关系及运算,就是集合间的关系和运算。
3、定义:事件的包含与相等若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。
若A?B且A?B则称事件A与事件B相等,记为A=B。
定义:和事件“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。
记为A∪B。
用集合表示为: A∪B={e|e∈A,或e∈B}。
定义:积事件称事件“事件A与事件B都发生”为A与B的积事件,记为A ∩B或AB,用集合表示为AB={e|e∈A且e∈B}。
定义:差事件称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。
定义:互不相容事件或互斥事件如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。
定义6:逆事件/对立事件称事件“A 不发生”为事件A 的逆事件,记为ā 。
A 与ā满足:A ∪ā= S,且A ā=Φ。
运算律:设A ,B ,C 为事件,则有(1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪CA(BC)=(AB)C=ABC(3)分配律:A ∪(B ∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A ∩B)∪(A ∩C)= AB ∪AC(4)德摩根律:小结: 事件的关系、运算和运算法则可概括为四种关系:包含、相等、对立、互不相容;四种运算:和、积、差、逆;四个运算法则:交换律、结合律、分配律、对偶律。
第二节:1、 设试验E 是古典概型, 其样本空间S 由n 个样本点组成 , 事件A 由k 个样本点组成 . 则定义事件A 的概率为:P(A)=k/n =A 包含的样本点数/S 中的样本点数。
2、 几何概率:设事件A 是S 的某个区域,它的面积为 μ(A ),则向区域S 上随机投掷一点,该点落在区域A 的概率为:B A B A =BA B A =P (A )=μ(A )/μ(S ) 假如样本空间S 可用一线段,或空间中某个区域表示,并且向S 上随机投掷一点的含义如前述,则事件A 的概率仍可用(*)式确定,只不过把 理解为长度或体积即可.概率的性质: (1)P(?)=0, (2)(3) (4) 若A ?B ,则P(B-A)=P(B)-P(A), P(B) ≥ P(A).第四节:条件概率:在事件B 发生的条件下,事件A 发生的概率称为A 对B 的条件概率,记作P (A |B ).而条件概率P (A |B )是在原条件下又添加“B 发生”这个条件时A 发生的可能性大小,即P (A |B )仍是概率.乘法公式: 若P (B )>0,则P (AB )=P (B )P (A |B )P(A)>0,则P(AB)=P(A)P(B|A)全概率公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且P (A i )>0,i =1,2,…,n , B 是任一事件, 则 贝叶斯公式:设A 1,A 2,…,A n 是试验E 的样本空间Ω的一个划分,且P (A i )>0,i =1,2,…,n , B 是任一事件且P (B )>0, 则第五节 :若两事件A 、B 满足 P (AB )= P (A ) P (B ) 则称A 、B 独立,或称A 、B 相互独立.()∑∞=∞==⎪⎪⎭⎫ ⎝⎛11m m P P ΦΦ ();,,,,2,1,,,11∑===⎪⎪⎭⎫ ⎝⎛≠=n k k n k k j i A P A P j i n j i A A 则两两互不相容,),(1)(A P A P -=∑==ni i i A B P A P B P 1)()()(|∑==nj jj i i i A B P A P A B P A P B A P 1)()()()()|(||将两事件独立的定义推广到三个事件:对于三个事件A 、B 、C ,若P (AC )= P (A )P (C ) P (AB )= P (A )P (B )P (ABC )= P (A )P (B )P (C ) P (BC )= P (B )P (C ) 四个等式同时 成立,则称事件 A 、B 、C 相互独立.第六节:定理 对于n 重贝努利试验,事件A 在n 次试验中出现k 次的概率为总结:1. 条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
2. 乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,请牢固掌握。
3. 独立性是概率论中的最重要概念之一,亦是概率论特有的概念,应正确理解并应用于概率的计算。
4. 贝努利概型是概率论中的最重要的概型之一,在应用上相当广泛。
第二章:随机变量及其分布1 、随机变量:分为离散型随机变量和连续型随机变量。
分布函数:设 X 是一个 ,x 为一个任意实数,称函数F(X)=P (X ≤x )为 X 的分布函数。
X 的分布函数是F(x)记作 X ~ F(x) 或 F X (x).p q n k q p C k P k n k k n n -===-1,,,1,0)(如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的值就表示 X 落在区间 (x ≤X )。
3、 离散型随机变量及其分布定义1 :设x k (k =1,2, …)是离散型随机变量X 所取的一切可能值,称等式P(X=x k )=P K , 为离散型随机变量X 的概率函数或分布律,也称概率分布. 其中P K,≥0;ΣP k =1分布律与分布函数的关系:(1)已知随机变量X 的分布律,可求出X 的分布函数: ①设一离散型随机变量X 的分布律为P{X=x k }=p k (k=1,2,…)由概率的可列可加性可得X 的分布函数为 ②已知随机变量X 的分布律, 亦可求任意随机事件的概率。
(2)已知随机变量X 的分布函数,可求出X 的分布律:一、 三种常用离散型随机变量的分布. 1(0-1)分布:设随机变量X 只可能取0与1两个值,它的分布律为 ∑∑≤≤===≤=x x kx x k k k p x F x X P x X P x F )(}{}{)(即P{X=k}=p k (1-p)1-k , k=0,1. (0<p<1)则称X 服从(0-1)分布,记为X ?(0-1)分布。
(0-1)分布的分布律用表格表示为:X 0 1P 1-p p 易求得其分布函数为2.二项分布(binomial distribution):定义:若离散型随机变量X 的分布律为 其中0<p<1,q=1-p,则称X 服从参数为n,p 的二项分布,记为X ?B(n,p).4、 泊松分布的定义及图形特点 设随机变量X 所有可能取的值为0 , 1 , 2 , … , 且概率分布为: 其中 入 >0 是常数,则称 X 服从参数为 入 的泊松分布,记作X ~P (入).、连续型随机变量1概率密度f(x)的性质(1)f(x)≥0(2) (3).X 落在区间(x 1,x 2)的概率 几何意义:X 落在区间(x 1,x 2)的概率P{x 1<X≤x 2}等于区间(x 1,x 2)上曲线y=f(x)之下的曲边梯形的面积.(4).若f(x)在点x 处连续,则有F′(x)=f(x)。
⎪⎩⎪⎨⎧≥<≤-<=110100)(x p x p x x F {}n k qp C k X P k k k n ,,1,01 ===-,,,,,!)( 210===-k k e k X P kλλ1)(=⎰∞+∞-dt t f {}⎰=-=≤<21)()()(1221x x dx x f x F x F x X x P.概率密度f(x )与分布函数F(x )的关系:(1)若连续型随机变量X 具有概率密度f(x ),则它的分布函数为 (2)若连续型随机变量X 的分布函数为F(x ),那么它的概率密度为f(x )=F′(x ).注意:对于F(x )不可导的点x 处,f(x )在该点x 处的函数值可任意给出。
三种重要的连续型分布:1.均匀分布(Uniform Distribution) 设连续随机变量X 具有概率密度 则称X 在区间(a ,b)上服从均匀分布,记为X ?U(a ,b). 若X ?U(a ,b),则容易计算出X 的分布函数为 2. 指数分布入>0则称 X 服从参数为 入的指数分布.常简记为 X~E( 入)指数分布的分布函数为 指数分布的一个重要特性是”无记忆性”.设随机变量X 满足:对于任意的s>o ,t>0,有则称随机变量X 具有无记忆性。
3. 正态分布 若 X 的概率密度为 ⎩⎨⎧<≥=-000)(x x e x f xλλdtt f x F x ⎰∞-=)()(⎪⎩⎪⎨⎧<<-=其他01)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧≥≤≤--<=bx b x a ab a x a x x F 10)(⎩⎨⎧≤>-=-0001)(x x e x F xλ{}{}t X P s X t s X P ≥=≥+≥|∞<<∞-=--x e x f x ,)()(22221σμπσ其中 μ和 都是常数, 任意,μ >0,则称X 服从参数为 μ 和 的正态分布. 记作f (x )所确定的曲线叫作正态曲线.的正态分布称为标准正态分布.标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布.随机变量函数的分布设X 为连续型随机变量,具有概率密度f x (x),求Y=g(X) (g 连续)的概率密度。
1.一般方法——分布函数法可先求出Y 的分布函数F Y (y):因为F Y (y)=P{Y≤y}=P{g(X)≤y},设l y ={x|g(x)≤y}则再由F Y (y)进一步求出Y 的概率密度 2. 设连续型随机变量X 的密度函数为?X (x), y=f(x)连续, 求Y= f(X)的密度函数的方法有三种:(1)分布函数法;(2)若y=f(x)严格单调,其反函数有连续导函数,则 可用公式法;2σ2σ),(~2σμN X 1,0==σμ(){}⎰⎰<==∈=y x g X l X y Y dx x f dx x f l X P y F y )()()(())(y F y f Y Y '=(3)若y=g(x)在不相重叠的区间I 1,I 2,…上逐段严格单 调,其反函数分别为h 1(y), h 2(y), …,且h ?1(y), h ?2(y), …,均为连续函数,则Y= g(X)是连续型随机变量,其密度函数为对于连续型随机变量,在求Y =g (X ) 的分布时,关键的一步是把事件 { g (X )≤ y } 转化为X 在一定范围内取值的形式,从而可以利用 X 的分布来求 P { g (X )≤ y }.。