当前位置:文档之家› 晶体界面的基础知识

晶体界面的基础知识

33
首先表示出在旋转轴[h, k, l]垂直的一个晶体面上重位点阵的 排列与它上面的晶体晶格相似。
34
35
36
37
38
39
教材P17
40
41
二、 O 点阵理论(O-Lattice theory)
(一) O 点阵理论
设两晶体1L和2L的晶体晶界相连。为了简化,假设两晶体 为并进晶格,与CSL相同,并假定晶界相互贯通了的两晶格。在 两晶体有相同晶格点时,以它为原点分析两晶格的变换关系(对 应关系),两晶体有特定的旋转关系,只形成与贯通晶格一致的 晶格点,旋转角度取离散值,与CSL无任何偏离。为使旋转角取 连续值,把2L的特定空间点变换为1L点并与变换前的1L点在晶 体学上等价时,把其变换后的点定为O点阵点。O点阵点周期性 的排列形成了晶格。在此必须注意,O点阵点周围环境不完全等 价,但可大致认为,不论1L和2L都是等价的。所以求得与 CSL 有同样方位关系的O点阵后,CSL点以外的空间点就可镶嵌进 O 点阵,CSL变为O点阵的超晶格。
例如,假设两个晶体有旋转关系,在考虑三元小回转角的 时候,可推断从1L的原点近似的三个独立晶格的矢量容易原封 不动地与2L对应,但旋转角变大时,用该假设计算的 O 点阵变 小,不能反映实际发生的对应关系。
从前面的结论显示可知,必须取1L基本矢量对应于2L矢 量,其变换关系要取最接近的矢量。作为例子讨论[110]旋转轴 的两个体心立方晶格的(110)面上的晶格,计算用二元进行。
3K2TiF6+13Al=Al3Ti+3KAlF4+K3AlF6
(1)
2KBF4+3Al=AlB2+2KAlF4
(2)
Al3Ti+AlB2=TiB2+4Al
(3)
It is suggested that K2TiF6 and KBF4 can react with Al to form
TiB2 phase via the reaction (4):
右图用实线和虚线表示出两个 不同的晶列,由此可见,同一 个格子可以形成方向不同的晶 列,每一个晶列定义了一个方 向,称为晶向 。
18
如果从一个原子沿晶向到最近的原子的位移矢量为:
19
三、晶面
晶面 —— 晶体内三个非共线结点组成的平面。 在一晶面外过其它格点作一系列与原晶面平行的晶面,可得到 一组等距的晶面,各晶面上结点的分布情况是相同的。这组等 距的晶面的称为一族晶面。 面间距——同族晶面中,相邻两晶面的距离。
(晶面的概念是以格点组成互相平行的平面,再构成晶体。 )
20
21
例:立方晶系的几个晶面
22
23
24
25
3、 晶格的周期性
一、晶格与布拉伐格子 1. 晶格:晶体中原子(或离子)排列的具体形式。
2. 布拉伐格子(空间点阵)
布拉伐格子:一种数学上的抽象,是点在空间中周期性的规则排列。
格点:空间点阵中周期排列的几何点。所有点在化学、物理和几何 环境上完全相同。
排列方式: ABABAB (六方密堆积)
典型晶体:Be、Mg、Zn、Cd、Ti
配位数:hcp的配位数为12。 12
13
c. 金刚石结构:
典型晶体:金刚石、Si、Ge
金刚石的配位数为 4;
14
2. 简单化合物晶体
NaCl结构
典型晶体:NaCl、LiF、KBr
15
CsCl结构
典型晶体:CsCl、CsBr、CsI
30
一、重位点阵理论
晶体界面一般定义为,两侧晶体同相,在晶体结构和晶格 常数都相等的两个晶体间产生的界面。选择特殊的方位关系 后,因为其晶格常数相等,它成为按一定原子排列周期性重 复的界面。
作为讲述晶体晶界的形式,提出了理论和模型的人在历史 上数不胜数,但重位点阵理论的构成是高水平的。提倡用假 设两侧晶体晶格延长线上相互重合的排他律为人们提供周期 规律晶界的许多信息,这是我们想让大家体会到的事实。
从本质上讲,CSL 概念与晶界原子排列无直接关系;在通常情 况下,CSL 模型对象为立方晶体。对于对称性小的晶体系晶格点 的重合小,与之替换的近似重合成为重要的O 点阵理论。
各晶体晶格点中在1 /Σ值的比例与晶格点一致时, CSL 用Σ值 表示,其值通常为奇数。
32
图1-1a表示的晶界附近的晶格点排列中,两晶体的晶格点位置关系不明 确; (b)中表示的贯通晶格看,对应晶格与1L或2L的基本晶格相似形,我们 可知在1L或2L的晶格点中有9点对1点的比例关系。
第一章 晶体界面的基础知识
江苏大学 材料科学与工程学院
1
参考教材:
1. 固体材料界面基础,颜莹编著,东北大学出版社,2008年; 2.材料界面结构与特性,叶恒强编著,科学出版社,1999年; 3.材料科学基础,张联盟, 黄学辉, 宁晓岚编,武汉理工大学出
版,2008年; 4.固体物理学,黄昆原著,韩汝琦改编,高等教育出版社,
16
闪锌矿结构
在晶胞顶角和面心处的原子与体内原子分别属于不同的元素。 许多重要的半导体化合物都是闪锌矿结构。典型晶体:ZnS、 CdS、GaAs、-SiC
17
晶向、晶面
晶体具有方向性,沿晶格的不同方向晶体性质不同。 布拉伐格子的格点可以看成分列在一系列相互平行的直线系 , 这些直线系称为晶列 。
基元:每一个格点所代表的物理实体。
26
布拉伐格子一共有14 种。
sc
bcc
fcc
立方晶系的布拉伐格子
27
实际晶格 = 布拉伐格子 + 基元
A、若格点上的基元只包含一个原子,那么晶格为简单晶格。 晶格中所有原子在化学、物理和几何环境上都是完全等同的。
B、若格点上的基元包含两个或两个以上的原子(或离子),那 么晶格为复式晶格。 简单晶格必须由同种原子组成;反之,由同种原子组成
(c) 非共格界面
一般情况下: (1)在板状相中,板面为完全共格界面,周围是非共格界面; (2)在针状相中,周围是完全共格界面,两端是非共格界面。
64
Fig. 1. Microstructure of TiB2/Al composites
65
TiB2 phase may be formed by the following reactions:
2、宏观对称性; 3、各向异性和解理性。例如,云母的解理性; 4、有固定的熔点。
8
几种常见的晶体结构
1. 元素晶体 一维 二维
二维正方堆积
二维密排堆积
9
三维 a. 较松散的堆积
简单立方(simple cubic, sc)堆积
体心立方(body-centered cubic,bcc)堆积
典型晶体:Li、Na、K、-Fe 配位数:一个原子周围最近邻原子的数目。
对于体心立方(bcc)配位数为 8 。
10
b. 密堆积:
面心立方(face-centered cubic, fcc)堆积
排列方式: ABCABC (立方密堆积)
典型晶体: Cu、Ag 、Au、Ca、Sr、Al、
配位数: fcc的配位数为12。
11
密排六方( hexagonal close-packed, hcp )堆积
54
55
56
(四)几何学的低能界面
为从1L向2L的变换得到近似地O点阵,我们都希望det[I-A-1] 的绝对值最小。但是,必须用体积几何学能量评价法,在两晶体 间的界面结构的重要部位,导入界面能为指标的参数。设那样的 界面由等间距的并列平行位错线组成,弹性的界面能E为式(141):
57
58
62
一、材料界面的分类
我们可在形态上把材料界面做如下分类:
完全共格界面
通过两相间界面的晶格面和晶格点有完 全对应关系-简单共格界面
非共格界面
通过两相间界面的晶格面和晶格点无对 应关系或对应关系少的界面
半共格界面
介于二者之间的界面-部分共格界面
63
弹性应变能:大


界面能:小


(a) 共格界面
(b) 半共格界面
42
43
一阶微分时,在式(l-16)中只有一个独立解的条件下, X(O)的解是在特定周期和方位上具有特定方向的一元贯通的 直线平面集合。这样的变换 A例适用于把一个平面作为不变的 单纯剪断。
44
(二) 实际计算
45
46
47
பைடு நூலகம்8
49
50
51
52
53
(三)选择两晶体的对应矢量
在考虑两晶体间的变换关系时,1L的矢量如何与2L对应, 至今还没有明确的结论。因做网目位错的伯格斯矢量不太适用 于O点阵理论。
(五) 共格界面偏离的DSC晶格
59
60
61
第二节 材料界面结构
(1)低能量相界面是常规结构普遍存在的现象。因此,为了增加 界面的稳定性,必须降低体系能量,即两相之间需保持特定的 晶体方位关系。
(2) 扩散相变在形成过程中,优先形成了低能量的相界面。 (3) 材料界面结构很大程度上影响了材料的性质。 (4) 本章在讲述了材料界面结构时,也讲述了最近的科研结果。 (5)关于详细描述界面结构的几何学理论,请参照有关文献学习。
➢ 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周 期性,但无长程周期性 。
没有缺陷和杂质的晶体叫做理想晶体。 缺陷: 缺陷是指微量的不规则性。
5
晶 体
非 晶 体
规则网络
无规网络
6
准晶
Al65Co25Cu10合金
7
晶体的宏观性质
1、周期性:从原子排列的角度来讲 (均一性――从宏观理 化性质的角度来讲);
相关主题