当前位置:文档之家› 高中物理动能与动能定理试题类型及其解题技巧

高中物理动能与动能定理试题类型及其解题技巧

高中物理动能与动能定理试题类型及其解题技巧一、高中物理精讲专题测试动能与动能定理1.如图所示,小滑块(视为质点)的质量m = 1kg ;固定在地面上的斜面AB 的倾角θ=37°、长s =1m ,点A 和斜面最低点B 之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。

点B 与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O 点另一端恰好在B 点。

认为滑块通过点B 前、后速度大小不变;最大静摩擦力等于滑动摩擦力。

取g =10m/s 2 ,sin37° =0.6,cos37° =0.8,不计空气阻力。

(1)若设置μ=0,将滑块从A 点由静止释放,求滑块从点A 运动到点B 所用的时间。

(2)若滑块在A 点以v 0=lm/s 的初速度沿斜面下滑,最终停止于B 点,求μ的取值范围。

【答案】(1)3t =s ;(2)13324μ≤≤或31316μ=。

【解析】 【分析】 【详解】(1)设滑块从点A 运动到点B 的过程中,加速度大小为a ,运动时间为t ,则由牛顿第二定律和运动学公式得sin mg ma θ=212s at =解得33t =s (2)滑块最终停在B 点,有两种可能:①滑块恰好能从A 下滑到B ,设动摩擦因数为1μ,由动能定律得:2101sin cos 02mg s mg s mv θμθ-=-g g解得11316μ=②滑块在斜面AB 和水平地面间多次反复运动,最终停止于B 点,当滑块恰好能返回A 点,由动能定理得2201cos 202mg s mv μθ-=-g解得2132μ=此后,滑块沿斜面下滑,在光滑水平地面和斜面之间多次反复运动,最终停止于B 点。

当滑块恰好能静止在斜面上,则有3sin cos mg mg θμθ=解得334μ=所以,当23μμμ≤≤,即13324μ≤≤时,滑块在斜面AB 和水平地面间多次反复运动,最终停止于B 点。

综上所述,μ的取值范围是13324μ≤≤或31316μ=。

2.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(2;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得4m/s A v (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得C v(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D v 所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

可以看成质点的物块从斜面顶点A 处由静止释放,沿斜面AB 和水平面BC 运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B 点的速度大小变化,最终物块停在 水平面上C 点。

已知物块与斜面和水平面间的滑动摩擦系数均为μ。

请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。

【答案】见解析所示 【解析】 【详解】设斜面长为L ',倾角为θ,物块在水平面上滑动的距离为S .对物块,由动能定理得:cos 0mgh mg L mgS μθμ-⋅'-=即:cos 0sin hmgh mg mgS μθμθ-⋅-= 0tan hmgh mgmgS μμθ--= 由几何关系可知:tan hL S θ=- 则有:()0mgh mg L S mgS μμ---=0mgh mgL μ-=解得:hL μ=故斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。

4.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。

A 与B 半径均为R ,曲面均光滑,半圆柱体A 底面与斜面间的动摩擦因数为μ.现用平行斜面向上的力拉A ,使A 沿斜面向上缓慢移动,直至B 恰好要降到斜面.设最大静摩擦力等于滑动摩擦力,重力加速度为g 。

求: (1)未拉A 时,B 受到A 的作用力F 大小; (2)在A 移动的整个过程中,拉力做的功W ;(3)要保持A 缓慢移动中拉力方向不变,动摩擦因数的最小值μmin .【答案】(1)F (2)1(92W mgR μ=- (3)min 9μ= 【解析】 【详解】(1)研究B ,据平衡条件,有F =2mg cos θ解得F mg(2)研究整体,据平衡条件,斜面对A 的支持力为N =3mg cos θf =μN =2μmg 由几何关系得A 的位移为x =2R cos30°R克服摩擦力做功Wf =fx =4.5μmgR由几何关系得A 上升高度与B 下降高度恰均为h =2据功能关系W + 2mgh - mgh - Wf = 0解得1(92W mgR μ=-(3)B 刚好接触斜面时,挡板对B 弹力最大 研究B 得24sin 30mmgN mg '==︒研究整体得f min + 3mg sin30° = N′m解得f min = 2.5mg可得最小的动摩擦因数:min min f N μ==5.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:(1)滑块运动到圆环最高点C时的速度的大小;(2)滑块运动到圆环最低点时对圆环轨道压力的大小;(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功.【答案】(1)Rg(2)6mg(3)12 mgR【解析】【分析】【详解】(1)小滑块从C点飞出来做平抛运动,水平速度为v0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D到最低点过程中,设DB过程中克服摩擦力做功W1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.6.如图所示,半径R = 0.1m的竖直半圆形光滑轨道BC与水平面AB相切,AB距离x =1m.质量m = 0.1kg的小滑块1放在半圆形轨道末端的B点,另一质量也为m = 0.1kg的小滑块2,从A 点以0210v =m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道.已知滑块2与水平面之间的动摩擦因数μ= 0.2.取重力加速度210m/s g =.两滑块均可视为质点.求(1)碰后瞬间两滑块共同的速度大小v ; (2)两滑块在碰撞过程中损失的机械能E ∆; (3)在C 点轨道对两滑块的作用力F .【答案】(1)v =3m/s (2)ΔE = 0.9J (3)F =8N ,方向竖直向下 【解析】 【详解】(1)物块2由A 到B 应用动能定理:22101122mgx mv mv μ-=- 解得v 1=6m/s两滑块碰撞前后动量守恒,根据动量守恒有:12mv mv = 解得:3/v m s = 方向:水平向右 (2)两滑块在碰撞过程中损失的机械能22111222E mv mv ∆=-⨯ 解得:0.9J E ∆=(3)两滑块从B 到C 机械能守恒,根据机械能守恒定律有:221122222c mv mv mgR ⨯=⨯+ 两滑块在C 点时:2N 22Cv mg F m R+=解得:N 8N F =据牛顿第三定律可得:在C 点轨道对两滑块的作用力F =8N ,方向竖直向下7.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m 的小圆环相接触,BC 和CD 是由细杆弯成的1/4圆弧,BC 分别与杆AB 和弧CD 相切,两圆弧的半径均为R .O 点为弹簧自由端的位置.整个轨道竖直放置,除OB 段粗糙外,其余部分均光滑.当弹簧的压缩量为d 时释放,小圆环弹出后恰好能到达C 点,返回水平杆时刚好与弹簧接触,停在O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B 处和C 处没有能量损失),问:(1)当为弹簧的压缩量为d 时,弹簧具有的弹性势能P E 是多少?(2)若将小圆环放置在弹簧的压缩量为2d 时释放,求小圆环到达最高点D 时,轨道所受到的作用力.(3)为了使物块能停在OB 的中点,弹簧应具有多大的弹性势能?【答案】(1)P 2E mgR =(2)9mg ,方向竖直向上(3)''P 1=()2E n mgR + (n =0、1、2) 【解析】 【分析】 【详解】(1)设小圆环与OB 之间的摩擦力为f ,OB=L ;从释放到回到O 点,由能量关系可知,当弹簧的压缩量为d 时,弹簧具有的弹性势能P 2E fL =小圆环从释放能到达C 点到,由能量关系可知0P E fL mgR --=可得:P 2E mgR =(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为2d 时弹性势能为E P ´=4E P =8mgR小圆环到达最高点D 时:'2P D 122E mv mg R fL =+⋅+解得D 10v gR =在最高点D 时由牛顿第二定律:2Dv N mg m R+=解得N =9mg ,方向竖直向下由牛顿第三定律可知在D 点时轨道受到的作用为9mg ,方向竖直向上;(3)为了使物块能停在OB 的中点,则要求滑块到达的最高点为D 点,然后返回,则''P 23E fL mgR mgR ≤+=为了使物块能停在OB 的中点,同时还应该满足:''P 1(21)()22L E n f n mgR =+⋅=+ 则只能取n =0、1、2;8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.如图所示,光滑水平面MN 的左端M 处有一弹射装置P ,右端N 处与水平传送带恰平齐接触,传送带水平部分长度L=16m ,沿逆时针方向以恒定速度v=2m/s 匀速转动.ABCDE 是由三部分光滑轨道平滑连接在一起组成的,AB 为水平轨道,弧BCD 是半径为R 的半圆弧轨道,弧DE 是半径为2R 的圆弧轨道,弧BCD 与弧DE 相切在轨道最高点D ,R=0.6m .平面部分A 点与传送带平齐接触.放在MN 段的物块m (可视为质点)以初速度v 0=4m/s 冲上传送带,物块与传送带间的摩擦因数μ=0.2,物块的质量m=1kg .结果物块从滑上传送带又返回到N 端,经水平面与左端M 处的固定弹射器相碰撞(弹射器的弹簧原来被压缩后被锁定),因碰撞弹射器锁定被打开,将物块弹回后滑过传送带,冲上右侧的圆弧轨道,物块恰能始终贴着圆弧轨道内侧通过了最高点,最后从E 点飞出.g 取10m/s 2.求:(1)物块m 从第一次滑上传送带到返回到N 端的时间.(2)物块m 第二次在传送带上运动时,传送带上的电动机为了维持其匀速转动,对传送带所多提供的能量多大?【答案】(1) 4.5t s =(2)8J W = 【解析】试题分析:(1)物块B 向右作匀减速运动,直到速度减小到零,然后反向匀减速运动,达到与皮带共速后与皮带匀速物块B 向右作匀减速运动过程:mg ma μ=12s v t gμ== 物块向右达到的最大位移:014m 2v S t =⋅= 反向匀加速运动过程加速度大小不变.达到与传送带共速的时间:21s v t g μ== 相对地面向左位移:/21m 2v S t =⋅= 共速后与传送带匀速运动的时间:/341 1.5s 2S S t v --=== 往返总时间:(2)由物块恰能通过轨道最高点D ,并恰能始终贴着圆弧轨道内侧通过最高点可得,物块是在半径为2R 的圆弧上的最高点重力全部充当向心力.得:又由物块上滑过中根据机械能守恒得:代入数据解得:66m/s B v Rg ==物块第二次从N 到A 点:2112L v t g t μ=⋅-⋅ 速度关系:1B v v g t μ=-⋅代入得:;得:2s t =或8s t =-(舍)物体运动时传送带的位移:4m s vt ==传送带为维持匀速运动多提供的力:F mg μ= 传送带所做的功等于传送带多提供的能量:8J W F s mg s μ=⋅=⋅=考点:考查牛顿运动定律的综合应用;动能定理.【名师点睛】本题关键明确滑块的运动规律,然后分阶段运用牛顿第二定律、运动学公式、动能定理列式求解.10.一质量为m =0.5kg 的电动玩具车,从倾角为θ=30°的长直轨道底端,由静止开始沿轨道向上运动,4s 末功率达到最大值,之后保持该功率不变继续运动,运动的v -t 图象如图所示,其中AB 段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g =10m/s 2.(1)求玩具车运动过程中的最大功率P ;(2)求玩具车在4s 末时(图中A 点)的速度大小v 1;(3)若玩具车在12s 末刚好到达轨道的顶端,求轨道长度L .【答案】(1)P =40W (2)v 1=8m/s (3)L =93.75m【解析】【详解】(1)由题意得,当玩具车达到最大速度v =10m/s 匀速运动时,牵引力:F =mg sin30°+0.3mg由P =Fv代入数据解得:P =40W(2)玩具车在0-4s 内做匀加速直线运动,设加速度为a ,牵引力为F 1,由牛顿第二定律得:F 1-(mg sin30°+0.3mg )=ma4s 末时玩具车功率达到最大,则P =F 1v 1由运动学公式v 1=at 1 (其中t 1=4s )代入数据解得:v 1=8m/s(3)玩具车在0~4s 内运动位移x 1=2112at 得:x 1=16m玩具车在4~12s 功率恒定,设运动位移为x 2,设t 2=12s 木时玩具车速度为v ,由动能定理得P (t 2-t 1)-(mg sin30°+0.3mg )x 2=2211122mv mv 代入数据解得:x 2=77.75m所以轨道长度L =x 1+x 2=93.75m11.将一根长为L 的光滑细钢丝ABCDE 制成如图所示的形状,并固定在竖直平面内.其中AD 段竖直,DE 段为34圆弧,圆心为O ,E 为圆弧最高点,C 与E 、D 与O 分别等高,BC =14AC .将质量为m 的小珠套在钢丝上由静止释放,不计空气阻力,重力加速度为g . (1)小珠由C 点释放,求到达E 点的速度大小v 1;(2)小珠由B 点释放,从E 点滑出后恰好撞到D 点,求圆弧的半径R ;(3)欲使小珠到达E 点与钢丝间的弹力超过4mg ,求释放小珠的位置范围.【答案】⑴v 1=0; ⑵243L R π=+; ⑶C 点上方低于34(43)L π+处滑下或高于54(43)L π+处【解析】【详解】 (1)由机械能守恒可知,小珠由C 点释放,到达E 点时,因CE 等高,故到达E 点的速度为零;(2)由题意:13(2)44BC L R R π⎡⎤=-⋅+⎢⎥⎣⎦;小珠由B 点释放,到达E 点满足:212E mgBC mv = 从E 点滑出后恰好撞到D 点,则E R v t = ;2R t g =联立解得:243L R π=+; (3)a.若小珠到达E 点与小珠上壁对钢丝的弹力等于14mg ,则2114E v mg mg m R-= ;从释放点到E 点,由机械能守恒定律:21112E mgh mv = ; 联立解得:3384(43)L h R π==+ b.若小珠到达E 点与小珠下壁对钢丝的弹力等于14mg ,则2214E v mg mg m R+= ;从释放点到E 点,由机械能守恒定律:22212E mgh mv =; 联立解得:5584(43)L h R π==+ ; 故当小珠子从C 点上方低于34(43)L π+ 处滑下或高于54(43)L π+ 处滑下时,小珠到达E 点与钢丝间的弹力超过14mg .12.如图所示,AB 为倾角θ=37°的斜面轨道,轨道的AC 部分光滑,CB 部分粗糙,BP 为圆心角等于143°、半径R=1m 的竖直光滑圆弧轨道,两轨道相切于B 点,P 、Q 两点在同一竖直线上,轻弹簧一端固定在A 点,另一自由端在斜面上C 点处,现有一质量m=2kg 的小物块在外力作用下降弹簧缓慢压缩到D 点后(不栓接)释放,物块经过C 点后,从C 点运动到B 点过程中的位移与时间的关系为2124x t t =-(式中x 单位为m ,t 单位是s ),假设物块第一次经过B 点后恰能到达P 点,sin37°=0.6,cos37°=0.8,210/g m s =,试求:(1)若CD=1m ,试求物块从D 点运动到C 点的过程中,弹簧对物块所做的功; (2)B 、C 两点间的距离x ;(3)若在P 处安装一个竖直弹性挡板,小物块与挡板碰撞后速度反向,速度大小不变,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?【答案】(1)156J (2)498x m =(3)不会脱离轨道 【解析】试题分析:(1)由2124x t t =-知,物块在C 点速度为012/v m s =设物块从D 点运动到C 点的过程中,弹簧对物块所做的功为W ,由动能定理有 201sin 372W mgCD mv -︒= 代入数据得:156J W =(2)由2124x t t =-知,物块从C 运动到B 过程中的加速度大小为28/a m s = 设物块与斜面间的动摩擦因数为μ,由牛顿第二定律得sin cos mg mg ma θμθ+= 代入数据解得0.25μ=物块在P 点的速度满足2P v mg m R= 物块从B 运动到P 的过程中机械能守恒,则有2211 22B P pB mv mv mgh =+,又()153pB h R sin =+︒物块从C 运动到B 的过程中有2202B BC v v ax -=- 由以上各式解得498BC x m = (3)假设物块第一次从圆弧轨道返回并与弹簧相互作用后,能够回到与O 点等高的位置Q 点,且设其速度为Q v ,由动能定理得2211 2cos3722Q P BC mv mv mgR mgx μ-=-︒ 解得2190Q v =-< 可见物块返回后不能到达Q 点,故物块在以后的运动过程中不会脱离轨道.考点:考查了动能定理,牛顿第二定律,机械能守恒定律【名师点睛】本题综合考查了动能定理、机械能守恒定律以及牛顿第二定律,对学生的能力要求较高,关键理清物体的运动情况,掌握临界条件,选择合适的规律进行求解.。

相关主题