电动力学_17狭义相对论
t t
机动 目录 上页 下页 返回 结束
t ' t
3、伽氏变换下麦氏方程等可变性的三种看法 麦克斯韦方程 • 麦克斯韦方程不正确
伽利略变换
• 电磁运动不服从相对性原理 • 伽利略变换不适合高速运动
(1)充满宇宙,透明而密度很小(电磁 弥散空间,无孔不入); (2)具有高弹性。电磁波一般为横波, 以太应是一种固体 v G ( G是切 变模量,ρ是介质密度); (3)它只在牛顿绝对时空中静止不动, 即在特殊参照系中静止。
(1)在一切相对作匀速运动惯性系中牛顿力学定律具有相同形式; ⑵ 一切惯性系都是等价的,不存在特殊的惯性系。
三
经典时空理论的局限性
1、光速可变并与光源运动相关
不能在一个参照系内部做实验来确 定该参照系相对另一系的速度。
u x u x v, u y u y , u z u z
机动 目录 上页 下页 返回 结束
2、拖曳理论
地球不是绝对参照系。但由于以太很轻,地球在以太中运 动可以拖动以太一起运动。但这种说法与光行差现象矛盾。 恒星光行差现象(1727年发现): 观察恒星光线的视方向与“真实”方向之间有一夹角, 这说明若以太存在,将不能被地球拖动。若被拖动则地球上将 看不到光行差现象。地球上观察天体的方向,应是地球相对恒 星的运动速度与光速合成的方向。
机动 目录
地球
上页
下页
返回
结束
4、收缩假定(1892年洛仑兹—斐兹杰惹)
假定认为沿相对以太运动方向上物体长度收缩为 l 1 v 2 c 2 则在地球上观测,光沿MM1M时间:
l1 1 v 2 c 2 l1 1 v 2 c 2 2l1 c t1 cv cv 1 v2 c2 2l2 c 2 l2 l1 c 沿MM2M无收缩: t2 1 2 2 1 v2 c2 1 v c 2l2 c 2l1 c 2 l1 l2 c , t2 同理: t1 2 1 v2 c2 1 v2 c2 1 v2 c2 因此 0 2 1
X'
O
(x1 t1 )
(x2 t2 )
X
l = x2- x1
r ( x2 x1 ) 2 ( y 2 y1 ) 2 ( z 2 z1 ) 2
x1 ( x2 vt ) ( x1 vt ) x2 x1 x2
r xቤተ መጻሕፍቲ ባይዱ ) 2 ( y2 y1 ) 2 ( z2 z1 ) 2 r ( x2
实验结果
N 0
该实验被认为是狭义相对论的主要实验支柱之一。 迈克耳逊——莫雷实验的零结果,说明了“以太”本身不存在。 1907年迈克耳逊因创制精密光学仪器而获得诺贝尔物理学奖
四
对实验结果的几种解释
1、地球相对以太静止论
地球为绝对参照系,光速在地球上恒为 C 且各向同性。这 样显然光程差为零,在地球上实验条纹不移动。但此解释必然 得出地球是宇宙中心的结论,同时太阳光在地球周围各向同性, 但太阳相对地球运动,仍不符合经典速度合成。
1
v
B
A
2
v
cv
cv
这一说法与双星实验相矛盾。若光 速与光源运动有关,则在 1处光速相对 地球为C+v,2处光速相对地球为 C-v。 在同一时刻观看 B 星不应是一亮点。 B 星不同时刻发出的光在同一时刻到达地 球,拍摄照片应是一条很短的亮线。但 实验结果均为亮点,说明光速与光源运 动无关。 1924 年用日光做迈氏实验, 仍然无移动,证明双星实验正确。
A.爱因斯坦 —— 20世纪最伟大的物理学家。 1879年3月14日生于德国乌耳姆,1900年毕业于瑞 士苏黎世联邦工业大学。 1905 年,爱因斯坦在科 学史上创造了史无前例的奇迹 —— 建立了狭义相 对论,推动了整个物理学理论的革命。1955年4月 19日在美国逝世。
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
§1
历史背景及重要实验基础
牛顿力学
麦克斯韦电磁场理论 热力学与经典统计理论
《引言》 • 19世纪后期,经典物理 学的三大理论体系使经 典物理学已趋于成熟。
两朵乌云: • 迈克耳逊——莫雷“以太漂移”实 验 • 黑体辐射实验 • 近代物理学的两大 狭义相对论 支柱,逐步建立了 量子力学 新的物理理论。 • 近代物理不是对经典理论的简单否定 • 近代物理不是经典理论的补充,而是全新的理论
2
仪器转动
2l 2l t t2 t1 2 v 12 v2 c(1 2 ) c(1 2 ) c c
l1 l2 l
2l2 2l2 2l2 1 t2 u c2 v2 c 1 v2 / c2
M2
vt2
1 ct
/2
2l
2 ct
引起干涉条 纹的移动:
系光速各向异性 ux u x v c cos v u y u y c sin
uz u z 0
光沿 系X轴传播的速度 光沿 系Y轴传播的速度
Y
Y'
v
u c
在 系 光速各 向同性
O O’
X' X
u cv
u c v
M2
2l1 1 l1 l1 t1 2 2 c 1 v / c cv cv
O
l2 l1
M1
u
地球系 以太风
v
P
机动 目录 上页 下页
返回
结束
对光线(2) O M2 O 设
2l t1 t t2 2 v v 2 12 c(1 2 ) c(1 2 ) c c
Y
Y'
v
x x vt
t t
z z
y y
r
O
ZZ Z'
机动 目录
(x, y, z) P
r
X (X')
O'
上页
下页
返回
结束
关于长度和时间的测量
• 在每个惯性系放一个时钟和一把尺子,钟和尺与
参照系无关,与内部结构无关,与运动无关。 • 运动长度的测量:在同一时间去测量物体的两端。 Y Y' t = t 1 2 v
v
v
c
对太阳光的实验观测:
v 理论计算: tg c
1
41'' 0.005730
4
v 3.0 10 m / s
机动 目录 上页 下页 返回 结束
3、发射理论
静止光源光速为 C ,运动光源光速改 变,且各向同性。这样在地球上用静止 光源做实验,条纹当然不移动。麦氏方 程在地球上精确成立,但在以太中形式 不同。仍认为以太存在,这样阳光在地 球上不为C。
t' t
• 空间是绝对的
x' x
• 时空相互分离
F ma ma F
结论:在一切惯性系中,经典力学 中的时空是绝对的—— 绝对时空观
机动 目录 上页 下页 返回 结束
牛顿定律不变性
二
力学相对性原理 (Galilean Principle of Relativity)
机动 目录 上页 下页 返回 结束
狭义相对论的重点与难点
本章重点: 1、深刻理解经典时空理论和迈克尔逊实验; 2、熟记狭义相对论基本原理、洛仑兹变换; 3、理解同时的相对性和尺缩、钟慢效应,能够 熟练利用洛仑兹速度变换解决具体问题; 4、了解相对论四维形式和四维协变量; 5、掌握相对论力学的基本理论并解决实际问题。 本章难点: 1、同时的相对性、时钟延缓效应的相对性; 2、相对论四维形式的理解; 3、电动力学相对论不变性的导出过程。*
洛仑兹在此基础上建立了一套惯性系间的变换关系,可证明麦 克斯韦方程在此变换下不变。但他没有突破经典时空观,没有 建立相对论,并对自己结果持怀疑态度。长度为什么会收缩, 长度定义是什么,变换中时间的意义是什么……?
机动 目录 上页 下页 返回 结束
电动力学
第 六 章
Special relativity
2005
世界物理年
纪念爱因斯坦 狭义相对论诞生 100 周 年 与 爱 因 斯坦逝世 50 周年。
让物理走近 大众,让世界 拥抱物理
主要内容:
• • • • • 相对论的实验基础 相对论的基本原理 洛伦兹变换 相对论的时空理论 相对论的四维形式 相对论力学
v 光程差 2l (v c) 2 1 2 c 光程差与条纹移动关系 N
机动 目录 上页
2l v 2 N c2
下页 返回 结束
1881年迈克耳逊第一次实 验,预期 N 0.04
1887年迈克耳逊和莫雷改 进实验,预期 N 0.4
迈克耳逊干涉仪精度可观测到 0.01个条纹的移动。
机动 目录 上页 下页 返回 结束
一、伽利略变换
—— 在两个惯性系中分析描述同一物理事件(event)
在t =0 时刻,物体在O 点, • 在t = t 时刻,物体运动到P 点
系重合
: r x, y , z , t : r x , y , z ,t
正 变 换
相对性原理
4、 “以太”概念及绝对参照系
光借助“以太 ”媒质传播, 相对静止的“ 以太”,光的 传播速度各向 同性,均为C 。
“以太”究竟为何物?
机动 目录 上页 下页 返回 结束
三
迈克耳逊—— 莫雷实验
• 假定相对性原理不成立,麦克斯韦方程的形式仅在以太中成 立。因此在地球上可以设计实验来验证地球相对“以太”的 速度。反过来可以通过实验寻找“以太”静止的绝对参考系。 • 假定在“以太”中光速各项同性且恒等于C,而在其它参考系 光速各项异性。 • 假定太阳与以太固连,地球相对于以太的速度就应当是地球 绕太阳的运动速度。 对光线(1) :O M 1 O