/doc/view/31109.html收藏词条编辑词条齿轮测量创建时间:2008-08-02齿轮测量gear measurement图片:图片:图片:chilunceliang齿轮测量(卷名:机械工程)gearmeasurement长度计量技术中对齿轮参数的测量。
测量圆柱齿轮和圆锥齿轮误差的方法有单项测量和综合测量两种。
单项测量主要是测量齿形误差、周节累积误差、周节偏差、齿向误差和齿圈径向跳动等。
齿形测量图1为齿轮齿形测量的原理。
常用的测量方法有展成法和坐标法。
①展成法:基圆盘的直径等于被测渐开线理论基圆直径。
当直尺带动与它紧密相切的基圆盘和与基圆盘同轴安装的被测齿轮转动时,与直尺工作面处于同一平面上的测量杠杆的刀口相对于被测齿轮回转运动的轨迹是一理论渐开线。
以它与被测渐开线齿形比较,即可由测微仪(见比较仪)指示出齿形误差。
利用此法测量齿形误差的工具有单盘渐开线测量仪和万能渐开线测量仪(见渐开线测量仪)。
②坐标法:按齿形形成原理列出齿廓上任一点的坐标方程式,然后计算出齿廓上若干点的理论坐标值,以此与实际测得的被测齿形上相应点的坐标值比较,即可得到被测齿形误差。
有直角坐标法和法线展开角坐标法两种。
前者的测量原理是被测齿廓上各点的坐标值(x、y)分别由X和Y方向的光栅测量系统(见光栅测长技术)测出,经电子计算机计算后得出齿形误差。
此法适用于测量大型齿轮的齿形。
法线展开角坐标法用于测量渐开线齿形。
当与被测齿轮同轴安装的圆光栅转动一个展开角φ时,由长光栅测量系统测出被测渐开线基圆的展开弧长ρ,由电子计算机按计算式ρ=r0φ(式中r0为基圆半径)计算出被测弧长与理论弧长之差值。
按需要在齿廓上测量若干点,由记录仪记录出齿形误差曲线图。
周节测量图2为齿轮周节测量的原理。
周节测量有绝对测量法和相对测量法。
①绝对测量法:被测齿轮与圆光栅长度传感器同轴安装。
测量时,被测齿轮缓慢回转,当电感式长度传感器的测头与齿面达到预定接触位置时,电感式长度传感器发出计数开始信号,利用电子计算机计算由圆光栅长度传感器发出的经过处理后得到的电脉冲数,直至测头与下一齿面达到预定接触位置为止。
如此逐齿进行,测出相当于各实际周节的电脉冲数,经电子计算机处理后即可得出周节偏差和周节累积误差。
②相对测量法:利用两电感式长度传感器的测头安置组成相当于被测齿轮任一实际周节,以此逐齿与所有其他各实际周节比较。
测得的差值经过电子线路和电子计算机处理,即可得出周节偏差和周节累积误差。
齿向测量图3为齿轮齿向测量的原理。
齿向测量常用的有导程法和基圆螺旋角法。
这两种方法都是根据斜齿轮回转一周,与齿面接触的任一点沿轴向移动一个导程的原理。
①导程法:当滑架沿轴线方向移动时,安装在滑架上的正弦尺推动直尺并带动圆盘和与圆盘同轴安装的被测齿轮转动。
正弦尺的倾斜角度是按计算导程的方法调整的,测量头相对于被测齿轮作螺旋运动而测出齿向误差。
②基圆螺旋角法:在渐开线测量仪上增加度盘、测角读数显微镜(图中未表示)等进行测量。
当直尺带动基圆盘和被测齿轮转动时,电感式长度传感器的测头由固定在直尺上的滑块和滑架圆盘上倾斜的直槽控制着向下移动。
利用度盘等使直槽的倾斜角度等于被测齿轮的基圆螺旋角,因此测头相对于被测齿轮作螺旋运动而测出齿向误差。
采用此法的齿轮测量工具通常称为渐开线和螺旋线测量仪。
20世纪70年代初,开始利用长光栅(或激光)、圆光栅等组成的测量系统、电子计算机自动控制系统和数据处理系统等组成的自动测量系统,在同一台齿轮量仪上测量齿向误差,齿形误差和周节偏差等。
直齿圆柱齿轮的齿向误差也常在具有精密直线导轨的齿圈径向跳动仪上测量。
齿圈径向跳动测量以被测齿轮轴心线定位,利用带有球形测头或锥角等于2倍齿形角的圆锥形测头的测微仪,使测头位于齿高中部与齿廓双面接触。
测头相对于齿轮轴心线的最大变动量即齿圈径向跳动。
测量齿圈径向跳动的仪器是齿圈径向跳动仪。
综合测量通过测量齿轮与被测齿轮啮合传动来测量齿轮的传动精度。
测量齿轮是一种精度比被测齿轮高两级以上的齿轮,也有以测量蜗杆代替测量齿轮的。
综合测量有双面啮合法和单面啮合法两种。
①双面啮合法:利用测量齿轮与被测齿轮作双面啮合转动,以被测齿轮转动一转内的中心距最大变动量表示被测齿轮的径向综合误差。
利用此法的齿轮测量工具称为齿轮双面啮合检查仪(见齿轮综合检查仪)。
②单面啮合法:利用测量齿轮与被测齿轮在公称中心距下啮合转动,以转角误差形式表示被测齿轮的切向综合误差。
采用此法的齿轮测量工具有齿轮单面啮合检查仪和齿轮单面啮合整体误差测量仪(见齿轮整体误差测量技术)。
综合测量还可用于检查齿轮副接触斑点和噪声等。
对于圆锥齿轮,一般采用综合测量,以检验齿轮副的接触斑点为主,也有测量齿轮副径向综合误差、齿轮副切向综合误差和噪声的。
单项测量一般是测量周节累积误差和齿圈径向跳动,测量方法与圆柱齿轮的相同,但要保持测量头轴线垂直于圆锥素线。
70年代后期,人们开始利用三坐标测量机测量圆锥齿轮的齿形,并用绘图仪描绘出被测齿面的轮廓图形。
/content/wjzx/2009/2/12/105679.shtml齿轮测量技术100年的回顾与展望来源:网络来源日期:2009-2-12 点击:2141起源与历程齿轮的应用有着悠久的历史,而齿轮的科学研究却始于17世纪M1Camus发现齿轮传动的节点原理;1765年,LlEuler将渐开线齿形引入齿轮,100多年后,Fellows等人应用范成法高效地生产出渐开线齿轮,从此渐开线齿轮得到了广泛应用。
由于制造与安装等方面的原因,实际齿轮总是存在着误差。
这种误差对传动系统的精度与动态特性(特别是振动与噪声)有直接的影响。
因此,如何表征、测量、分析、利用和控制齿轮误差一直是不断探索的课题。
齿轮测量的基础是齿轮精度理论。
齿轮测量技术的发展历程是以齿轮精度理论的发展为前提的。
齿轮精度理论的发展实质上反映了人们对齿轮误差认识的深化。
迄今,齿轮精度理论经历了齿轮误差几何学理论、齿轮误差运动学理论和齿轮误差动力学理论的发展过程。
其中,齿轮误差动力学理论还处在探索中。
第一种理论将齿轮看作纯几何体,认为齿轮是一些空间曲面的组合,任一曲面都可由三维空间中点的坐标来描述,实际曲面上点的位置和理论位置的偏差即为齿轮误差。
第二种理论将齿轮看作刚体,认为齿轮不仅仅是几何体,也是个传动件,并认为齿轮误差在啮合运动中是通过啮合线方向影响传动特性的,因此啮合运动误差反映了齿面误差信息。
第三种理论将齿轮看作弹性体,对齿廓进行修形,“有意地”引入误差,用于补偿轮齿承载后的弹性变形,从而获取最佳动态性能,由此形成了齿轮动态精度的新概念。
齿轮精度理论的发展,导致了齿轮精度标准的不断丰富和更新,如传动误差、设计齿廓的引入等。
反过来,齿轮测量技术的发展也为齿轮精度理论的应用和齿轮标准的贯彻提供了技术支撑。
齿轮测量技术及其仪器的研发已有近百年的历史。
在这不短的发展历程中,有6件标志性事情:1)1923年,德国Zeiss公司在世界上首次研制成功一种称为“ToothSurfaceTester”的仪器,它实际上是机械展成式万能渐开线检查仪。
在此基础上经过改进,Zeiss公司于1925年推出了实用型仪器,并投入市场。
该仪器的长度基准采用了光学玻璃线纹尺,其线距为1μm。
该仪器的问世,标志着齿轮精密测量的开始。
在我国得到广泛使用的VG450就是该仪器的改进型。
2)50年代初,机械展成式万能螺旋线检查仪的出现,标志着全面控制齿轮质量成为现实。
3)1965年,英国研制出光栅式单啮仪,标志着高精度测量齿轮动态性能成为可能。
4)1970年,以黄潼年为主的中国工程师研发的齿轮整体误差测量技术,标志着运动几何法测量齿轮的开始。
5)1970年,美国Fellows公司在芝加哥博览会展出Microlog50,标志着数控齿轮测量中心的开始。
6)80年代末,日本大阪精机推出基于光学全息原理的非接触齿面分析机FS-35,标志着齿轮非接触测量法的开始。
2齿轮测量技术的演变整体上考察过去一个世纪里齿轮测量技术的发展,主要表现在三个方面[8]:1)在测量原理方面,实现了由“比较测量”到“啮合运动测量”,直至“模型化测量”的发展。
2)在实现测量原理的技术手段上,历经了“以机械为主”到“机电结合”,直至当今的“光-机-电”与“信息技术”综合集成的演变。
3)在测量结果的表述与利用方面,历经了从“指示表加肉眼读取”,到“记录器记录加人工研判”,直至“计算机自动分析并将测量结果反馈到制造系统”的飞跃。
与此同时,齿轮量仪经历了从单品种单参数仪器(典型仪器有单盘渐开线检查仪),单品种多参数仪器(典型仪器有齿形齿向检查仪),到多品种多参数仪器(典型仪器有齿轮测量中心)的演变。
2.1机械展成式测量技术20世纪70年代以前,齿轮测量原理主要以比较测量为主,其实质是相对测量。
具体方式有两种:一是将被测齿轮与一标准齿轮进行实物比较,从而得到各项误差;二是展成测量法,就是将仪器的运动机构形成的标准特征线与被测齿轮的实际特征线作比较,来确定相应误差;而精确的展成运动是借助一些精密机构来实现的。
不同的特征线需要不同的展成机构,同一展成运动可用不同的机械结构来实现。
比较测量的主要缺点是:测量精度依赖于标准件或展成机构的精度,机械结构复杂,柔性较差,同一个齿轮需要多台仪器测量。
从20世纪20年代至60年代末,各国对机械展成式测量技术的研究历经了近半个世纪。
早期着重于渐开线展成测量技术的研究,后来将展成测量思想移植到了螺旋线测量上,先后开发出多种机械式渐开线展成机构,如单盘式、圆盘杠杆式、正弦杠杆式、靠模式等。
尤以圆盘杠杆式应用最广,属于这一类的仪器有:ZeissVG450,CarlMahr890和891S,MAAGSP60和HP100,大阪精机GC-4H和GC-6H以及哈量3201。
对于齿廓误差测量而言,机械展成式测量技术仅限于渐开线齿廓误差测量上。
对于非渐开线齿轮的端面齿廓测量,采用展成法测量是十分困难的,因为展成机构太复杂并且缺乏通用性。
对于精确的螺旋展成机构,主要采用正弦尺原理,只是如何将正弦尺的直线运动精确地转换为被测工件的回转运动的方式各不相同。
这种机构在滚刀螺旋线测量上应用最为典型,例如,德国Fette 公司生产的UWM型滚刀测量仪,Zeiss厂生产的万能滚刀测量仪,前苏联ВНИИ设计的万能型滚刀测量仪,意大利Samputensili厂的Su-130型滚刀测量仪,美国Michigan公司生产的万能滚刀测量仪,Klingelnberg公司的PWF250/300,等等。
20世纪70年代以前,机械展成式测量技术已经发展成熟,并在生产实践中经受了考验。
迄今,基于这些技术的仪器仍是一些工厂检测齿轮的常用工具。